
DRAFT NIST Special Publication 800-178 1

A Comparison of Attribute Based 2

Access Control (ABAC) Standards for 3

Data Services 4

Extensible Access Control Markup Language (XACML) and 5

Next Generation Access Control (NGAC) 6

7

David Ferraiolo 8

Ramaswamy Chandramouli 9

Vincent Hu 10

Rick Kuhn 11

12

13

14

15

16

17

C O M P U T E R S E C U R I T Y 18

19

20

DRAFT NIST Special Publication 800-178 21

A Comparison of Attribute Based 22

Access Control (ABAC) Standards for 23

Data Services 24

Extensible Access Control Markup Language (XACML) and 25

Next Generation Access Control (NGAC) 26

27

David Ferraiolo 28

Ramaswamy Chandramouli 29

Vincent Hu 30

Rick Kuhn 31

Computer Security Division 32

Information Technology Laboratory 33

34

35

December 2015 36

37

38

39
40
41

U.S. Department of Commerce 42
Penny Pritzker, Secretary 43

44
National Institute of Standards and Technology 45

Willie May, Under Secretary of Commerce for Standards and Technology and Director 46

ii

Authority 47

This publication has been developed by NIST in accordance with its statutory responsibilities under the 48
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3541 et seq., Public Law 49
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, 50
including minimum requirements for federal information systems, but such standards and guidelines shall 51
not apply to national security systems without the express approval of appropriate federal officials 52
exercising policy authority over such systems. This guideline is consistent with the requirements of the 53
Office of Management and Budget (OMB) Circular A-130. 54

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 55
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should 56
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of 57
Commerce, Director of the OMB, or any other federal official. This publication may be used by 58
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. 59
Attribution would, however, be appreciated by NIST. 60

National Institute of Standards and Technology Special Publication 800-178 61
Natl. Inst. Stand. Technol. Spec. Publ. 800-178, 57 pages (December 2015) 62

CODEN: NSPUE2 63

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 64
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 65
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 66
available for the purpose. 67

There may be references in this publication to other publications currently under development by NIST in 68
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 69
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, 70
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 71
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of 72
these new publications by NIST. 73

Organizations are encouraged to review all draft publications during public comment periods and provide feedback 74
to NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at 75
http://csrc.nist.gov/publications. 76

Public comment period: December 2, 2015through January 15, 2016 77

All comments are subject to release under the Freedom of Information Act (FOIA). 78

National Institute of Standards and Technology 79
Attn: Computer Security Division, Information Technology Laboratory 80

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 81
Email: sp800-178@nist.gov 82

83

84

http://csrc.nist.gov/publications
mailto:sp800-178@nist.gov

iii

Reports on Computer Systems Technology 85

The Information Technology Laboratory (ITL) at the National Institute of Standards and 86

Technology (NIST) promotes the U.S. economy and public welfare by providing technical 87

leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 88

methods, reference data, proof of concept implementations, and technical analyses to advance 89

the development and productive use of information technology. ITL’s responsibilities include the 90

development of management, administrative, technical, and physical standards and guidelines for 91

the cost-effective security and privacy of other than national security-related information in 92

federal information systems. The Special Publication 800-series reports on ITL’s research, 93

guidelines, and outreach efforts in information system security, and its collaborative activities 94

with industry, government, and academic organizations. 95

96

Abstract 97

Extensible Access Control Markup Language (XACML) and Next Generation Access Control 98

(NGAC) are very different attribute based access control (ABAC) standards with similar goals 99

and objectives. The aim of both is to provide a standardized way for expressing and enforcing 100

vastly diverse access control policies on various types of data services. However, the two 101

standards differ with respect to the manner in which access control policies are specified and 102

implemented. This document describes XACML and NGAC, and then compares them with 103

respect to five criteria. The goal of this publication is to help ABAC users and vendors make 104

informed decisions when addressing future data service policy enforcement requirements. 105

106

Keywords 107

access control; access control mechanism; access control model; access control policy; attribute 108

based access control (ABAC); authorization; Extensible Access Control Markup Language 109

(XACML); Next Generation Access Control (NGAC); privilege 110

111

iv

Acknowledgements 112

The authors wish to thank their colleagues who reviewed drafts of this document. The authors 113

also gratefully acknowledge and appreciate the comments and contributions made by 114

government agencies, private organizations, and individuals in providing direction and assistance 115

in the development of this document. 116

 117

Trademark Information 118

All registered trademarks or trademarks belong to their respective organizations. 119

 120

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

v

Executive Summary 121

Extensible Access Control Markup Language (XACML) and Next Generation Access Control 122

(NGAC) are very different attribute based access control (ABAC) standards with similar goals 123

and objectives. XACML, available since 2003, is an Extensible Markup Language (XML) based 124

language standard designed to express security policies, as well as the access requests and 125

responses needed for querying the policy system and reaching an authorization decision [17]. 126

NGAC is a relations and architecture-based standard designed to express, manage, and enforce a 127

wide variety of access control policies through configuration of its relations. Commonly asked 128

questions are, what are the similarities and differences between these two standards? What are 129

their comparative advantages and disadvantages? 130

These questions are particularly relevant because XACML and NGAC are different approaches 131

to achieving a common access control goal—to allow data services with vastly different access 132

policies to be expressed and enforced using the features of the same underlying mechanism in 133

diverse ways. These are also important questions, given the prevalence of data services in 134

computing. Data services include computational capabilities that allow the consumption, 135

alteration, and management of data resources, and distribution of access rights to data resources. 136

Data services can take on many forms, to include applications such as time and attendance 137

reporting, payroll processing, and health benefits management, but also including system level 138

utilities such as file management. 139

To answer these questions, this document first describes XACML and NGAC, then compares 140

them with respect to five criteria. The first criterion is the relative degree to which the access 141

control logic of a data service can be separated from a proprietary operational environment. The 142

other four criteria are derived from ABAC issues or considerations identified by NIST Special 143

Publication (SP) 800-162 [13]: operational efficiency, attribute and policy management, scope 144

and type of policy support, and support for administrative review and resource discovery. 145

Although NGAC is only now emerging as a national standard, it compares favorably in many 146

respects with XACML and should be considered, along with XACML, by both users and 147

vendors in addressing future data service policy enforcement requirements. Below is a summary 148

of this comparison. 149

Separation of Access Control Functionality from Proprietary Operating Environments 150

Both XACML and NGAC achieve separation of access control functionality of data services 151

from proprietary operating environments, but to different degrees. XACML’s separation is 152

partial. An XACML deployment consists of one or more data services, each with an operating 153

environment-dependent policy enforcement component, and operating environment-dependent 154

operation and resource types, that share a common policy decision function and access control 155

database consisting of policies and attributes. The degree of separation that can be achieved by 156

NGAC is near complete. Although NGAC issues application and system utility-specific access 157

requests, these requests may be comprised of operations that consist of sequences of standardized 158

operations on data resources and NGAC’s access control data. The requests are issued through a 159

standardized enforcement component to a standardized decision component, with functionality 160

that is not dependent on an application operating environment. 161

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

vi

Operational Efficiency 162

An XACML request is a collection of attribute name, value pairs for the subject (user), action 163

(operation), resource, and environment. XACML identifies relevant policies and rules for 164

computing decisions through a search for Targets (conditions that match the attributes of the 165

request). Because multiple Policies in a PolicySet and/or multiple Rules in a Policy may produce 166

conflicting access control decisions, XACML resolves these differences by applying collections 167

of potentially twelve rule and policy combining algorithms. The entire process involves 168

collecting attributes, matching conditions, computing rules, and resolving conflicts, involving at 169

least two data stores. 170

NGAC is inherently more efficient. An NGAC request is composed of a process id, user id, 171

operation, and a sequence of one or more operands mandated by the operation that affects either 172

a resource or access control data. NGAC identifies relevant Policies and attributes by reference 173

when computing a decision. NGAC computes decisions by applying a single combining 174

algorithm over applicable Policies that do not conflict. All information necessary in computing 175

an access decision resides in a single database. 176

Attribute and Policy Management 177

Proper enforcement of data resource policies is dependent on administrative policies. This is 178

especially true in a federated or collaborative environment, where governance policies require 179

different organizational entities to have different responsibilities for administering different 180

aspects of policies and their dependent attributes. 181

XACML and NGAC differ dramatically in their ability to impose policy over the creation and 182

modification of access control data (attributes and policies). NGAC manages attributes and 183

policies through a standard set of administrative operations, applying the same enforcement 184

interface and decision making function as it uses for accessing data resources. XACML does not 185

recognize administrative operations, but instead manages policy content through a Policy 186

Administration Point (PAP) with an interface that is different from that for accessing data 187

resources. XACML provides support for decentralized administration of some of its access 188

policies. However the approach is only a partial solution in that it is dependent on trusted and 189

untrusted policies, where trusted policies are assumed valid, and their origin is established 190

outside the delegation model. Furthermore, the XACML delegation model does not provide a 191

means for imposing policy over modification of access policies, and offers no direct 192

administrative method for imposing policy over the management of its attributes. 193

NGAC enables a systematic and policy-preserving approach to the creation of administrative 194

roles and delegation of administrative capabilities, beginning with a single administrator and an 195

empty set of access control data, and ending with users with data service, policy, and attribute 196

management capabilities. NGAC provides users with administrative capabilities down to the 197

granularity of a single configuration element, and can deny users administrative capabilities 198

down to the same granularity. 199

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

vii

Scope and Type of Policy Support 200

Although data resources may be protected under a wide variety of different access policies, these 201

policies can be generally categorized as either discretionary or mandatory controls. Discretionary 202

access control (DAC) is an administrative policy that permits system users to allow or disallow 203

other users’ access to objects that are placed under their control. Although XACML can 204

theoretically provide users with administrative capabilities necessary to control and give away 205

access rights to other users, the approach is complicated by the need to create and maintain 206

additional metadata for each and every object/resource. Conversely, NGAC has a flexible means 207

of providing users with administrative capabilities to include those necessary for the 208

establishment of DAC policies. 209

In contrast to DAC, mandatory access control (MAC) enables ordinary users’ capabilities to 210

execute resource operations on data, but not administrative capabilities that may influence those 211

capabilities. MAC policies unavoidably impose rules on users in performing operations on 212

resource data. MAC policies can be further characterized as controls that accommodate 213

confinement properties to prevent indirect leakage of data to unauthorized users, and those that 214

do not. 215

Expression of non-confinement MAC policies is perhaps XACML’s strongest suit. XACML can 216

specify rules and other conditions in terms of attribute values of varying types. There are 217

undoubtedly certain policies that are expressible in terms of these rules that cannot be easily 218

accommodated by NGAC. This is especially true when treating attribute values as integers. For 219

example, to approve a purchase request may involve adding a person’s credit limit to their 220

account balance. Furthermore, XACML takes environmental attributes into consideration in 221

expressing policy, and NGAC does not. However, there are some non-confinement MAC 222

properties, such as least privilege, and a variety of history-based policies that NGAC can 223

express, which XACML cannot. 224

In contrast to NGAC, XACML does not recognize the capabilities of a process independent of 225

the capabilities of its user. Without such features, XACML is ill equipped to support 226

confinement and as such is arguably incapable of enforcement of a wide variety of policies. 227

These confinement-dependent policies include some instances of role-based access control 228

(RBAC), e.g., “only doctors can read the contents of medical records”, originator control 229

(ORCON) and Privacy, e.g., “I know who can currently read my data or personal information”, 230

or conflict of interest, e.g., “a user with knowledge of information within one dataset cannot read 231

information in another dataset”. Through imposing process level controls in conjunction with 232

event-response relations, NGAC has shown [7] support for these and other confinement-233

dependent MAC controls. 234

Administrative Review and Resource Discovery 235

A desired feature of access controls is review of capabilities of users and access control entries of 236

objects [11]. These features are often referred to as “before the fact audit” and resource 237

discovery. “Before the fact audit” is one of RBAC’s most prominent features [18]. Being able to 238

discover or see a newly accessible resource is an important feature of any access control system. 239

NGAC supports efficient algorithms for both per-user and per-object review. Per-object review 240

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

viii

of access control entries is not as efficient as a pure access control list (ACL) mechanism, and 241

per-user review of capabilities is not as efficient as that of RBAC. However, this is due to 242

NGAC’s consideration of conducting review in a multi-policy environment. NGAC can 243

efficiently support both per-object and per-user reviews of combined policies, where RBAC and 244

ACL mechanisms can do only one type of review efficiently, and rule-based mechanisms such as 245

XACML, although able to combine policies, cannot do either efficiently. 246

 247

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

ix

 248

Table of Contents 249

Executive Summary .. v 250

1 Introduction .. 1 251

1.1 Purpose and Scope .. 1 252

1.2 Audience... 1 253

1.3 Document Structure .. 1 254

2 Background .. 2 255

2.1 XACML ... 4 256

2.2 NGAC ... 4 257

2.3 Comparison of XACML and NGAC’s Origins .. 5 258

3 XACML Specification ... 6 259

3.1 Attributes and Policies .. 6 260

3.2 Combining Algorithms .. 8 261

3.3 Obligation and Advice Expressions .. 8 262

3.4 Example Policies .. 9 263

3.5 XACML Access Request .. 12 264

3.6 Delegation .. 12 265

3.7 XACML Reference Architecture .. 16 266

4 NGAC Specification ... 19 267

4.1 Basic Policy and Attribute Elements ... 19 268

4.2 Relations... 20 269

4.2.1 Assignments and Associations ... 20 270

4.2.2 Derived Privileges... 21 271

4.2.3 Prohibitions (Denies) .. 24 272

4.2.4 Obligations ... 24 273

4.3 NGAC Decision Function .. 25 274

4.4 Administrative Considerations .. 25 275

4.4.1 Administrative Associations .. 26 276

4.4.2 Delegation .. 26 277

4.4.3 NGAC Administrative Commands and Routines 27 278

4.5 Arbitrary Data Service Operations and Policies .. 28 279

4.6 NGAC Functional Architecture .. 30 280

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

x

5 Analysis .. 32 281

5.1 Separation of Access Control Functionality from Proprietary Operating 282

Environments .. 32 283

5.2 Scope and Type of Policy Support ... 33 284

5.3 Operational Efficiency ... 38 285

5.4 Attribute and Policy Management ... 39 286

5.5 Administrative Review and Resource Discovery .. 40 287

 288

List of Appendices 289

Appendix A— Acronyms .. 41 290

Appendix B— References .. 42 291

Appendix C— XACML 3.0 Encoding of Medical Records Access Policy 44 292

 293

List of Figures 294

Figure 1: ABAC Overview ... 2 295

Figure 2: XACML Policy Constructs .. 7 296

Figure 3: Utilizing Delegation Chains for Policy Evaluation ... 14 297

Figure 4: XACML Reference Architecture ... 17 298

Figure 5: Two Example Assignment and Association Graphs 21 299

Figure 6: Graphs from Figures 5a and 5b in Combination ... 22 300

Figure 7: NGAC's Equivalent Expression of XACML Policy1 .. 23 301

Figure 8: NGAC Standard Functional Architecture .. 30 302

Figure 9: NGAC's Partial Expression of TCSEC MAC .. 37 303

 304

List of Tables 305

Table 1. Attribute Names and Values and the Authorization State for Policy 1 10 306

Table 2: Derived Privileges for the Independent Configuration of Figures 5a and 5b ... 21 307

Table 3: Derived Privileges for the Combined Configuration of Figures 5a and 5b 22 308

Table 4: Derived Privileges for the Configuration of Figure 7 .. 23 309

310

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 1

1 Introduction 311

1.1 Purpose and Scope 312

The purpose of this document is to compare and contrast Extensible Access Control Markup 313

Language (XACML) and Next Generation Access Control (NGAC) — two very different access 314

control standards with similar goals and objectives. The document explains the basics of both 315

standards and provides a comparative analysis based on attribute based access control (ABAC) 316

considerations identified in NIST Special Publication (SP) 800-162, Guide to Attribute Based 317

Access Control (ABAC) Definition and Considerations [13]. 318

1.2 Audience 319

The intended audience for this document includes the following categories of individuals: 320

 Computer security researchers interested in access control and authorization frameworks 321

 Security professionals, including security officers, security administrators, auditors, and 322

others with responsibility for information technology (IT) security 323

 Executives and technology officers involved in decisions about IT security products 324

 IT program managers concerned with security measures for computing environments 325

This document, while technical in nature, provides background information and examples to help 326

readers understand the topics that are covered. The material presumes that readers have a basic 327

understanding of security and possess fundamental access control expertise. 328

1.3 Document Structure 329

The remainder of this document is organized into the following sections: 330

 Section 2 provides background information on the origins, makeup, and objectives of 331

XACML and NGAC. 332

 Section 3 describes XACML’s policy specification language and reference architecture 333

for ABAC implementation. 334

 Section 4 describes NGAC’s fundamentally different approach from XACML for 335

representing requests, expressing and administering policies, representing and 336

administering attributes, and computing and enforcing decisions. 337

 Section 5 provides an analysis of XACML and NGAC’s similarities and differences 338

based on five criteria. 339

 Appendix A provides a list of acronyms used in the document. 340

 Appendix B contains a list of references. 341

 Appendix C provides a formal XACML policy specification for an abbreviated policy 342

example in Section 3. 343

 344

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 2

2 Background 345

XACML and NGAC both provide attribute-based approaches to accommodate a wide breadth of 346

access control policies and simplify their management. Most other access control approaches are 347

based on the identity of a user requesting execution of a capability to perform an operation on a 348

data resource (e.g., read a file), either directly via the user’s identity, or indirectly through 349

predefined attribute types such as roles or groups assigned to that user. Practitioners have noted 350

that these forms of access control are often cumbersome to set up and manage, given their 351

limitation of associating capabilities only to users or their attributes. Furthermore, the identity, 352

group, and role qualifiers of a requesting user are often insufficient for expressing real-world 353

access control policies. An alternative is to grant or deny user requests based on arbitrary 354

attributes of users and arbitrary attributes of data resources, and optionally environmental 355

attributes that may be globally recognized and tailored to the policies at hand. This approach to 356

access control is commonly referred to as attribute-based access control (ABAC) and is an 357

inherent feature of both XACML and NGAC. 358

From a policy management perspective, ABAC has advantages over other access control 359

approaches. ABAC avoids the need for capabilities (operation, data resource pairs) to be directly 360

assigned to every instance of a user or resource before the request is made. Instead, when a user 361

requests access, the ABAC engine (depicted in the center of Figure 1) can make access control 362

decisions based on the assigned attributes of the requesting user and data resource instances, 363

environmental attributes, and a set of policies that are specified in terms of those attributes. 364

Under this approach, policies are managed without direct reference to potentially numerous users 365

and data resources, and users and data resources can be provisioned through attribute assignment 366

without reference to policy details. 367

 368

Figure 1: ABAC Overview 369

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 3

XACML and NGAC are ABAC standards for facilitating policy-preserving user executions of 370

data service capabilities (data service operations on data service resources). In general, data 371

services are both applications and system utilities that provide users with capabilities to 372

consume, manipulate, manage, and share data. Data services can take on many forms, including 373

applications such as time and attendance reporting, payroll processing, corporate calendar, and 374

health benefits management, all with a strong dependency on access control. The XACML and 375

NGAC standards, enable decoupling of access control logic from proprietary operating 376

environments (e.g., operating system, database management system, application). 377

Stated another way, a data service is comprised of an application layer and an operating 378

environment layer that can be delineated by their functionality and interfaces. The application 379

layer provides a user interface and methods for data presentation and manipulation (e.g., font 380

selection, spell correction), and an interface for management and distribution of access rights on 381

data. The application layer does not carry out operations that consume data, alter the state of 382

data, or alter the access state to data (e.g., read, write/save, create and delete files, submit, 383

approve, schedule), but instead issue requests to the operating environment layer to perform 384

those operations. An operating environment implements operational routines (e.g., read, write) to 385

carry out application access requests and provides access control to ensure executions of 386

processes involving operational routines on data resources are policy preserving. In addition, 387

operating environments provide methods for authenticating users, creating and associating users 388

with their processes, and managing data resources and access control data. 389

Access control mechanisms comprise several components that work together to bring about 390

policy-preserving data resource access. These components include access control data for 391

expressing access control policies and representing attributes, and a set of functions for trapping 392

access requests, and computing and enforcing access decisions over those requests. Most 393

operating environments implement access control in different ways, each with a different scope 394

of control (e.g., users, resources), and each with respect to different operation types (e.g., read, 395

send, approve, select) and data resource types (e.g., files, messages, work items, records). 396

This heterogeneity introduces a number of administrative and policy enforcement challenges. 397

Administrators are forced to contend with a multitude of security domains when managing 398

access policies and attributes. Even if properly coordinated across operating environments, 399

global controls are hard to visualize and implement in a piecemeal fashion. Furthermore, because 400

operating environments implement access control in different ways, it is difficult to exchange 401

and share access control information across operating environments. XACML and NGAC seek 402

to alleviate these challenges by creating a common and centralized way of expressing all access 403

control data (Policies and Attributes) and computing decisions, over the access requests of 404

applications. 405

In 2014 NIST published SP 800-162, Guide to Attribute Based Access Control (ABAC) 406

Definition and Considerations [13] to serve two purposes. First, it provides Federal agencies 407

with an authoritative definition of ABAC and a description of its functional components. NIST 408

SP 800-162 addresses ABAC as a mechanism comprising four layers of functional 409

decomposition: Enforcement, Decision, Access Control Data, and Administration. Second, in 410

light of potentially numerous approaches to ABAC, NIST SP 800-162 highlights several 411

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 4

considerations for selecting an ABAC system for deployment. Among others, these 412

considerations pertain to operational efficiency, attribute and policy management, scope and type 413

of policy support, and support for administrative review and resource discovery. This report 414

examines and compares XACML and NGAC based on these considerations. In addition, it 415

compares XACML and NGAC in their abilities to separate access control logic necessary to 416

support applications from proprietary operating environments. 417

2.1 XACML 418

In 2003, with the emergence of Service Oriented Architecture (SOA), a new specification called 419

XACML was published through the Organization for the Advancement of Structured 420

Information Standards (OASIS). The specification presented the elements of what would later be 421

considered by many to be ABAC. In support of controlled execution of data service capabilities, 422

the XACML ABAC model employs three components in its authorization process: 423

 XACML policy language, for specifying access control requirements using rules, 424

policies, and policysets, expressed in terms of subject (user), resource, action (operation), 425

and environmental attributes and a set of algorithms for combining policies and rules. 426

 XACML request/response protocol, for querying a decision engine that evaluates 427

subject access requests against policies and returns access decisions in response. 428

 XACML reference architecture, for deploying software modules to house policies and 429

attributes, and computing and enforcing access control decisions based on policies and 430

attributes. 431

XACML is widely recognized by both the research and vendor communities. This acceptance is 432

evident by its implementation, in whole or part, across an increasing number of product 433

offerings. 434

2.2 NGAC 435

In 2003, NIST initiated a project in pursuit of a standardized ABAC mechanism referred to as 436

the Policy Machine that allows changes to a fixed set of data elements and relations in the 437

expression and enforcement of ABAC policies. The Policy Machine has evolved from a concept 438

to a formal specification [8] to a reference implementation and open source distribution. The 439

Policy Machine has served as a research component in support of a family of American National 440

Standards Institute/International Committee for Information Technology Standards 441

(ANSI/INCITS) standardization efforts under the title of "Next Generation Access Control" 442

(NGAC) [2], [20]. In addition to the expression and enforcement of a wide variety of access 443

control policies [6], [7], NGAC facilities can be used to effectuate security-critical portions of 444

the program logic of arbitrary data services and enforce mission-tailored access control policies 445

over data services [7], [9]. Taken together, these NGAC standards define: 446

 A standard set of data and relations used to express access control policies and attributes, 447

and deliver capabilities of data services to perform operations on data resources 448

 A standard set of administrative operations for configuring the data and relations, 449

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 5

 A standard set of functions, interfaces, and protocols for trapping and enforcing policy on 450

requests to execute operations on data resources, computing access decisions to permit or 451

deny those requests, and dynamically altering access state in response to access events. 452

The initial standard of the NGAC family was published in 2013. It is available from the ANSI 453

eStandards store as INCITS 499 – Next Generation Access Control - Functional Architecture 454

(NGAC–FA) [2]. INCITS 526 – Next Generation Access Control - Generic Operations and 455

Abstract Data Structures (NGAC-GOADS) [20] is in the approval process, and is expected to be 456

published in the fall of 2015. 457

2.3 Comparison of XACML and NGAC’s Origins 458

While largely developed in parallel, these standards were established under different timetables 459

and circumstances. XACML was developed as collaboration among vendors with a goal to 460

separate policy expression and decision-making from proprietary operating environments in 461

support of the access control policy needs of applications. XACML first appeared in 2003 and 462

was revised in 2013 by providing support for decentralized policy management. NGAC’s origin 463

stems from the NIST Policy Machine, a research effort that began in 2003 to develop a general-464

purpose ABAC framework. The Policy Machine, and thus NGAC, has benefited from 465

experimental implementation and sustained analysis, resulting in increased policy support and 466

decreased access control dependency on proprietary operational environments. 467

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 6

3 XACML Specification 468

XACML defines a policy specification language and reference architecture for ABAC 469

implementation. The standard encompasses requests, policies, attributes, and functions for 470

computing decisions and enforcing policies in response to access requests to perform actions on 471

resources. 472

For purposes of brevity and readability, the XACML specification is presented as a summary 473

that is intended to highlight XACML’s salient features and should not be considered complete. 474

In some instances, actual XACML details and terms are substituted with others to accommodate 475

a simpler and more consolidated presentation. 476

3.1 Attributes and Policies 477

An XACML access request consists of subject attributes (typically for the user who issued the 478

request), resource attributes (the resource for which access is sought), action attributes (the 479

operations to be performed on the resource), and environment attributes. 480

XACML attributes are specified as name-value pairs, where attribute values can be of different 481

types (e.g., integer, string). An attribute name/ID denotes the property or characteristic 482

associated with a subject, resource, action, or environment. For example, in a medical setting, the 483

attribute name Role associated with a subject may have doctor, intern, and admissions nurse 484

values, all of type string. Subject and resource instances are specified using a set of name-value 485

pairs for their respective attributes. For example, the subject attributes used in a Medical Policy 486

may include: Role = “doctor”, Role = “consultant”, Ward = “pediatrics”, SubjectName = 487

“smith”; an environmental attribute: Time = 12:11; and resource attributes: Resource-id = 488

“medical-records”, WardLocation = ”pediatrics”, Patient = “johnson”. Although XACML does 489

not require any convention for naming attributes, we sometimes use the prefixes Subject, 490

Resource, and Env for naming the subject, resource, and environment attributes, respectively, to 491

enhance readability. 492

Subject and resource attributes are stored in their respective repositories and are retrieved 493

through the Policy Information Point (PIP) at the time of an access request and prior to the 494

computation of the decision. XACML formally defines an action as a component of a request 495

with attribute values that specify operations such as read, write, submit, and approve. 496

Environmental attributes, which depend on the availability of system sensors that can detect and 497

report values, are somewhat different from subject and resource attributes, which are 498

administratively created. An environment is the operational or situational context in which 499

access requests occur. Environmental attributes are not properties of the subject or resources, but 500

are measurable characteristics that pertain to the operational or situational context. These 501

environmental characteristics are subject and resource independent, and may include the current 502

time, day of the week, or threat level. 503

In this document we use a functional notation for reporting on attribute values with the format 504

A(), where the parameter may be a subject, resource, action, or the environment. For example, 505

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 7

A(e), where e is the environment, may equal 09:00 (time) and low (threat level), and A(s), where 506

s is a subject, may equal smith (name) and doctor (role). We use a tuple notation to describe 507

multiple attributes possessed by a subject, resource, or environment. For example, for subject s1 508

we have A(s1) = <smith, doctor>, where the first attribute corresponds to the name and the 509

second one to the role possessed by subject s1. 510

As shown by Figure 2, XACML access policies are structured as PolicySets that are composed of 511

Policies and optionally other PolicySets, and Policies that are composed of Rules. Policies and 512

PolicySets are stored in a Policy Retrieval Point (PRP). Because not all Rules, Policies, or 513

PolicySets are relevant to a given request, XACML includes the notion of a Target. A Target 514

defines a simple Boolean condition that, if satisfied (evaluates to True) by the attributes, 515

establishes the need for subsequent evaluation by a Policy Decision Point (PDP). If no Target 516

matches the request, the decision computed by the PDP is NotApplicable. 517

 518

Figure 2: XACML Policy Constructs 519

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 8

In addition to a Target, a rule includes a series of boolean conditions that if evaluated True have 520

an effect of either Permit or Deny. If the target condition evaluates to True for a Rule and the 521

Rule’s condition fails to evaluate for any reason, the effect of the Rule is Indeterminate. In 522

comparison to the (matching) condition of a Target, the conditions of a Rule or Policy are 523

typically more complex and may include functions (e.g., “greater-than-equal”, “less-than”, 524

“string-equal”) for the comparison of attribute values. Conditions can be used to express access 525

control relations (e.g., a doctor can only view a medical record of a patient assigned to the 526

doctor’s ward) or computations on attribute values (e.g., sum(x, y) less-than-equal:250). 527

3.2 Combining Algorithms 528

Because a Policy may contain multiple Rules, and a PolicySet may contain multiple Policies or 529

PolicySets, each Rule, Policy, or PolicySet may evaluate to different decisions (Permit, Deny, 530

NotApplicable, or Indeterminate). XACML provides a way of reconciling the decisions each 531

makes. This reconciliation is achieved through a collection of combining algorithms. Each 532

algorithm represents a different way of combining multiple local decisions into a single global 533

decision. There are twelve combining algorithms, which include the following: 534

 Deny-overrides: if any decision evaluates to Deny, or no decision evaluates to Permit, 535

then the result is Deny. If all decisions evaluate to Permit, the result is Permit. 536

 Permit-overrides: if any decision evaluates to Permit, then the result is Permit, otherwise 537

the result is Deny. 538

 First-applicable: the result is the result of the first decision (either Permit, Deny, or 539

Indeterminate) when evaluated in their listed order. 540

 Only-one-applicable: if only one decision applies, then the result is the result of the 541

decision, and if more than one decision applies, then the result is Indeterminate. 542

Combining algorithms are applied to rules in a Policy and Policies within a PolicySet in arriving 543

at an ultimate decision of the PDP. Combining algorithms can be used to build up increasingly 544

complex policies. For example, given that a subject request is Permitted (by the PDP) only if the 545

aggregate (ultimate) decision is Permit, the effect of the Permit-overrides combining algorithm is 546

an “OR” operation on Permit (any decision can evaluate to Permit), and the effect of a Deny-547

overrides is an “AND” operation on Permit (all decisions must evaluate to Permit). 548

3.3 Obligation and Advice Expressions 549

XACML includes the concepts of obligation and advice expressions. An obligation optionally 550

specified in a Rule, Policy, or PolicySet is a directive from the PDP to the Policy Enforcement 551

Point (PEP) on what must be carried out before or after an access request is approved or denied. 552

Advice is similar to an obligation, except that advice may be ignored by the PEP. 553

A few examples include: 554

 If Alice is denied access to document X: email her manager that Alice tried to access 555

document X. 556

 If a user is denied access to a file: inform the user why the access was denied. 557

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 9

 If a user is approved to view document X: watermark the document “DRAFT” before 558

delivery. 559

A common use of an obligation, applied after an access request is approved, is for auditing and 560

logging user access events. 561

It should be noted that the functionality to accommodate the directives of an obligation or advice 562

is outside of the scope of XACML and must be implemented and executed by an application-563

specific PEP. 564

3.4 Example Policies 565

Consider the following two example XACML policy specifications. For purposes of maintaining 566

the same semantics as XACML, we use the same element names, but specify policies and rules 567

in pseudocode for purposes of enhanced readability (instead of exact XACML syntax). A more 568

formal XACML treatment of the first policy (Policy 1) is included in Appendix C. 569

Policy 1 applies to “All read or write accesses to medical records by a doctor or intern” (the 570

target of the policy) and includes three rules. As such, the policy is considered “applicable” 571

whenever a subject with a role of “doctor” or “intern” issues a request to read or write “medical-572

records” resource. The rules do not refine the target, but describe the conditions under which 573

read or write requests from doctors or interns to medical records can be allowed. Rule 1 will 574

deny any access request (read or write) if the ward in which the doctor or intern is assigned is not 575

the same ward where the patient is located. Rule 2 explicitly denies “write” access requests to 576

interns under all conditions. Rule 3 permits read or write access to medical-records for “doctor”, 577

regardless of Rule 1, if an additional condition is met. This additional condition pertains to 578

patients in critical status. Since the intent of the policy is to allow access under these critical 579

situations, a policy combining algorithm of “permit-overrides” is used, while still denying access 580

if only the conditions stated in Rule 1 or Rule 2 apply. 581

<Policy PolicyId = “Policy 1” rule-combining-algorithm=”permit-overrides”> 582
 // Doctor Access to Medical Records // 583

 <Target> 584

 /* :Attribute-Category :Attribute ID :Attribute Value */ 585

 :access-subject :Role :doctor 586

 :access-subject :Role :intern 587

 :resource :Resource-id :medical-records 588

 :action :Action-id :read 589

 :action :Action-id :write 590

 </Target> 591

 592

 <Rule RuleId = “Rule 1” Effect=”Deny”> 593
 <Condition> 594

 Function: string-not-equal 595

 /* :Attribute-Category :Attribute ID 596

 :access-subject :WardAssignment 597

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 10

 :resource :WardLocation 598

 </Condition> 599

 </Rule> 600

 601

 <Rule RuleId = “Rule 2” Effect=”Deny”> 602
 <Condition> 603

 Function: string-equal 604

 /* :Attribute-Category :Attribute ID :Attribute Value 605

 :access-subject :Role :intern 606

 :action :Action-id :write 607

 </Condition> 608

 </Rule> 609

 610

 <Rule RuleId = “Rule 3” Effect=”Permit”> 611
 <Condition> 612

 Function:and 613

 Function: string-equal 614

 /* :Attribute-Category :Attribute ID :Attribute Value */ 615

 :access-subject :Role :doctor 616

 Function: string-equal 617

 /* :Attribute-Category : Attribute ID : Attribute Value 618

 :resource :PatientStatus :critical 619

 </Condition> 620

 </Rule> 621

 </Policy> 622

 623

Together policies (PolicySets and Policies) and attribute assignments define the authorization 624

state. Table 1 defines the authorization state for Policy 1 by specifying attribute names and 625

values. 626

Table 1. Attribute Names and Values and the Authorization State for Policy 1 627

Subject Attribute Names and their Domains:

 Role = {doctor, intern}

 WardAssignment = {ward1, ward2}

Resource Attribute Names and their Domains:

 Resource-id = {medical-records}

 WardLocation = {ward1, ward2}

 PatientStatus = {critical}

Action Attribute Names and their Domains:

 Action-id = {read (r), write (w)}

Attribute value assignments when there are two subjects (s3, s4) and three resources (r5,

r6, r7):

 A(s3) = <doctor, ward2>,

 A(s4) = <intern, ward1>,

 A(r5) = <medical-records, ward2>,

 A(r6) = <medical-records, ward1>, and

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 11

 A(r7) = <critical>.

Authorization state:
 (s3, r, r5), (s3, w, r5), (s3, r, r7), (s3, w, r7), (s4, r, r6)

 628

Policy 2 applies to “IRS-agents and auditor access to tax-returns” (target of the policy) and has 629

two rules. This policy is an “applicable policy” whenever users with role “IRS-agent or auditor” 630

access the resource “tax-returns” with a write request. The rules do not refine the target, but state 631

the conditions under which write requests from IRS-agents or auditors to tax-returns records can 632

be allowed. Rule 1 will permit an applicable access request if the access time (an environmental 633

variable) is between 8 AM and 5 PM. Rule 2 will deny the request even if the condition in Rule 1 634

applies through an additional condition; the IRS-agent or auditor is attempting to write to his or 635

her own tax return. Since the intent of the policy is to disallow IRS employees from altering their 636

own tax returns, a policy combining algorithm of “deny-overrides” is used, while still allowing 637

access if the conditions stated in Rule 2 does not. 638

<Policy PolicyId = “Policy 2” rule-combining-algorithm=”deny-overrides”> 639
 // IRS Agent and Auditor Access to Tax Returns // 640

 <Target> 641

 /* :Attribute-Category : Attribute ID : Attribute Value */ 642

 :access-subject :Role :IRS-agent 643

 :access-subject :Role :auditor 644

 :resource :Resource-id :tax-returns 645

 :action :Action-id :write 646

 </Target> 647

 648

 <Rule RuleId = “Rule 1” Effect=”Permit”> 649
 <Condition> 650

 Function: and 651

 /* :Attribute-Category : Attribute ID : Attribute Value 652

 :environment : Time : ≥ 08:00 653

 :environment : Time : ≤ 18:00 654

 </Condition> 655

 </Rule> 656

 <Rule RuleId = “Rule 2” Effect=”Deny”> 657
 <Condition> 658

 Function: and 659

 /* :Attribute-Category : Attribute ID : Attribute Value 660

 :environment :Time : ≥ 08:00 661

 :environment :Time : ≤ 18:00 662

 Function: string-equal 663

 /* :Attribute-Category :Attribute ID 664

 : access-subject :SubjectName 665

 : resource :FilerName 666

 </Condition> 667

 </Rule> 668

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 12

 </Policy> 669

3.5 XACML Access Request 670

An XACML access request is specified in terms of one or more attributes associated with 671

elements: subject, action, resource, and environment. For example, if the IRS Agent Smith is 672

making a request to write Brown’s Tax Return at 9:30 a.m., the XACML access request will 673

carry the values “smith” and “IRS-agent” for the Subject-id and Role attributes, value “write” for 674

action’s Action-id, values “tax-return” and “brown” for the resource’s Resource-id, and 675

Resource-owner attributes, and value “09:30 a.m.” for environment’s Time attribute. XACML 676

pseudocode for this access request is as follows. 677

<Request REQ1> 678

 <Attributes> /* :Attribute-Category : Attribute ID : Attribute Value */ 679

 :access-subject :Subject-id :smith 680

 :access-subject :Role :IRS agent 681

 :resource :Resource-id :tax-return 682

 :resource :Resource-owner :brown 683

 :action :Action-id :write 684

 :environment :Time :9:30 a.m. 685

 </Attributes> 686

</Request REQ1> 687

 688

3.6 Delegation 689

The XACML Policies discussed thus far have pertained to Access Policies that are created and 690

may be modified by an authorized administrator. Access Policies specify capabilities for subjects 691

to perform actions on resource objects. An Access Policy is always considered trusted and its 692

authority is not verified by PDP. XACML includes a delegation mechanism to support 693

decentralized administration of a subset of access policies. A consequence of this feature is a 694

new type of policy called an Untrusted Access Policy that must have its authority verified. 695

In addition to Untrusted Access Policies, the delegation approach makes use of Trusted 696

Administrative Policies and Untrusted Administrative Policies. Administrative policies (trusted 697

or untrusted) include a delegate and a situation in its Target. A situation is a means of scoping 698

the access rights that can be delegated and may include some combination of subject, resource, 699

and action attributes. The delegate is an attribute category of the same type as subject, thus 700

representing the entity(s) that has been given the authority to create either access or further 701

delegation rights. 702

Trusted Administrative Policies serve as a root of trust. They are created under the same 703

authority that is used to create Access Policies. A Trusted Administrative Policy gives the 704

delegate the authority to create Untrusted Administrative Policies or Untrusted Access Policies. 705

The situation for a created Untrusted Administrative Policy or Untrusted Access Policy needs to 706

be either the same situation (the same scope) as that of the Trusted Administrative Policy or a 707

subset of the situation (narrower in scope). In addition, an Untrusted Administrative Policy or 708

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 13

Untrusted Access Policy includes a policy issuer tag with a value that is the same as the value of 709

the delegate in the administrative policy under which it was created. An Untrusted 710

Administrative Policy provides authority to the delegate to create either: (a) an Untrusted 711

Administrative Policy with a policy issuer, delegate, and situation, or (b) an Untrusted Access 712

Policy with a policy issuer and situation. Both these policies should have at least one rule with a 713

PERMIT or DENY effect. 714

XACML recognizes two types of requests – Access Requests and Administrative Requests. 715

Access Requests are issued to (attempt to match targets of) Access Policies or Untrusted Access 716

Policies. An Untrusted Access Policy includes a Policy Issuer tag and an Access Policy does not. 717

If the Access Request matches the target of an Access Policy, the PDP considers the Access 718

Policy applicable and it is directly used by PDP in a combining algorithm to arrive at a final 719

decision. If the Access Request matches the target of an Untrusted Access Policy, the authority 720

of the policy issuer must first be verified before it can be considered by the PDP. Authority is 721

determined through establishment of a delegation chain from the Untrusted Access Policy, 722

through potentially zero or more Untrusted Administrative Policies, to a Trusted Administrative 723

Policy. If the authority of the policy issuer can be verified, the PDP evaluates the access request 724

against the Untrusted Access Policy; otherwise it is considered an unauthorized policy and 725

discarded. In a graph where policies are nodes, a delegation chain consists of a series of edges 726

from the node representing an Untrusted Access Policy to a Trusted Administrative Policy. To 727

construct each edge of the graph, the XACML context handler formulates Administrative 728

Requests. 729

An Administrative Request has the same structure as an Access Request except that in addition 730

to attribute categories – access-subject, resource, and action – it also uses two additional attribute 731

categories, delegate and decision-info. If a policy Px happens to be one of the applicable 732

(matched) Untrusted Access Policies, the administrative request is generated using policy Px to 733

construct an edge to policy Py using the following: 734

 Convert all Attributes (and attribute values) used in the original Access Request to 735

attributes of category delegated. 736

 Include the value under the PolicyIssuer tag of Px as value for the subject-id attribute of 737

the delegate attribute category. 738

 Include the effect of evaluating policy Px as attribute value (PERMIT, DENY, etc.) for 739

the Decision attribute of decision-info attribute category. 740

The Administrative Request constructed using the above attributes is evaluated against the target 741

for policy Py. If the result of the evaluation is “PERMIT”, an edge is constructed between 742

policies Px and Py. The overall logic involved is to verify the authority for issuance of policy Px. 743

For this there should exist a policy with its “delegate” set to the policy issuer of Px. If that policy 744

is Py, then it means policy Px has been issued under the authority found in policy Py. The edge 745

construction then proceeds from policy Py until an edge to a Trusted Administrative Policy is 746

found. 747

The process of selecting applicable policies for inclusion in the combining algorithm is 748

illustrated in Figure 3. Based on the matching of the attributes in the original access request to 749

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 14

the targets in various policies, Untrusted Access Policies P31, P32, and P33 can be found to be 750

applicable policies. A path to a Trusted Administrative Policy P11 can be found directly from the 751

applicable Untrusted Access Policy P31. A path to a Trusted Administrative Policy P12 can be 752

found through Untrusted Administrative Policy P22 for the applicable Untrusted Access Policy 753

P32. Because no such path can be found for the third applicable Untrusted Access Policy P33, 754

only policies P31 and P32 will be used in the combining algorithm for evaluating the final access 755

decision, and policy P33 will be discarded since its authority could not be verified. 756

 757

Figure 3: Utilizing Delegation Chains for Policy Evaluation 758

Below is a more concrete example that illustrates the use of delegation chains to select applicable 759

policies that are used in combining algorithms for arriving at final access decisions. The example 760

gives a Policy Set that consists of four policies: 761

 Policy P1: A Trusted Administrative Policy that gives John (the delegate) the authority to 762

create policies for a situation involving reading of medical records to any user who has 763

the role of Doctor. 764

 Policy P2: An Untrusted Administration Policy that is issued by John, under the authority 765

of P1, to give Jessica (the delegate) the authority to create policies for a situation 766

involving reading of medical records to any user who has the role of Doctor. Because of 767

the matching of delegate of P1 to policy issuer of P2 and the fact that the situations in 768

both policies P1 and P2 are the same, it is obvious that the authority to issue policy P2 769

has come from policy P1. Thus P1 and P2 form a delegation chain. 770

 Policy P3: An Untrusted Access Policy that is issued by Jeff to give Carol the capability 771

to read medical records. 772

 Policy P4: An Untrusted Access Policy that is issued by Jessica to give Carol the ability 773

to read medical records. Because of the matching of delegate of P2 to policy issuer of P4 774

and the fact that the situations in both policies P2 and P4 are the same, it is obvious that 775

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 15

the authority to issue policy P4 has come from policy P2. Thus P2 and P4 form a 776

delegation chain. 777

The four policies described above are given in the form of pseudocode below: 778

<Policy Set> 779

 <Policy P1> /* Trusted Administrative Policy */ 780

 <Target> /* :Attribute-Category :Attribute ID :Attribute Value */ 781

 :access-subject :role :doctor 782

 :resource :resource-id :medical-records 783

 :action :action-id :read 784

 :delegate :subject-id :john 785

 </Target> 786

 <Rule R1> 787

 Effect: PERMIT 788

 </Rule R1> 789

 </Policy P1> 790

 791

 <Policy P2> /* Untrusted Administrative Policy */ 792

 <Policy Issuer> john </Policy Issuer> 793

 <Target> /* :Attribute-Category : Attribute ID : Attribute Value */ 794

 :access-subject :role :doctor 795

 :resource :resource-id :medical-records 796

 :action :action-id :read 797

 :delegate :subject-id :jessica 798

 </Target> 799

 <Rule R2> 800

 Effect: PERMIT 801

 </Rule R2> 802

 </Policy P2> 803

 804

 <Policy P3> /* UnTrusted Access Policy */ 805

 <Policy Issuer> Jeff </Policy Issuer> 806

 <Target> /* :Attribute-Category : Attribute ID : Attribute Value */ 807

 :access-subject :subject-id :carol 808

 :resource : resource-id :medical-records 809

 :action :action-id :read 810

 </Target> 811

 <Rule R3> 812

 Effect: PERMIT 813

 </Rule R3> 814

 </Policy P3> 815

 816

 <Policy P4> /* UnTrusted Access Policy */ 817

 <Policy Issuer> Jessica </Policy Issuer> 818

 <Target> /* :Attribute-Category : Attribute ID : Attribute Value */ 819

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 16

 :access-subject :subject-id :carol 820

 :resource :resource-id :medical-records 821

 :action :action-id :read 822

 </Target> 823

 <Rule R4> 824

 Effect: PERMIT 825

 </Rule R4> 826

 </Policy P4> 827

<Policy Set> 828

By matching the situation and delegate in one policy to situation and policy issuer in another, we 829

see that P1, P2, and P4 form a delegation chain. P3 is not part of any delegation chain. Given the 830

above delegation structure, let us see how the following access request REQ1 will be resolved. 831

<Request REQ1> 832

 <Attributes> /* :Attribute-Category : Attribute ID : Attribute Value */ 833

 :access-subject :subject-id :carol 834

 :access-subject :role :doctor 835

 :resource :resource-id :medical-records 836

 :action :action-id :read 837

 </Attributes> 838

</Request REQ1> 839

By matching the attributes (and values) in the request REQ1 with the attributes (and values) in 840

the target of the policies in the policy set, we find that only policies P3 and P4 match directly 841

since policies P1 and P2 contain delegated attributes. Since both policies P3 and P4 are untrusted 842

access policies, their respective authority has to be verified by making administrative requests. 843

Since policy P3 is not part of any delegation chain, its authority cannot be verified. However, the 844

authority for policy P4 can be established by using the delegation chain P1, P2, P4. 845

The same PAP interface that is used to create access policies can be used to create the additional 846

policies needed for supporting delegation – Untrusted Access Policies, Trusted Administrative 847

Policies, and Untrusted Administrative Policies. This requires at least two classes of policy 848

administrators. The first is a System-Administrator authorized to create Access Policies. The 849

second is a Delegated-Administrator authorized to create Untrusted Administrative Policies or 850

Untrusted Access Policies conforming to the situation or a subset of the situation authorized in 851

any Trusted Administrative Policy currently in the policy repository. 852

3.7 XACML Reference Architecture 853

XACML reference architecture defines necessary functional components (depicted in Figure 4) 854

to achieve enforcement of its policies. The authorization process is a seven-step process that 855

depends on four layers of functionality: Enforcement, Decision, Access Control Data, and 856

Administration. 857

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 17

At its core is a PDP that computes decisions to permit or deny subject requests (to perform 858

actions on resources). Requests are issued from, and PDP decisions are returned to, a PEP using 859

a standardized request and response language. The PEP is implemented as a component of an 860

operating environment that is tightly coupled with its application. A PEP may not generate 861

requests in XACML syntax nor process XACML syntax-compliant responses. In order to 862

convert access requests in native format (of the operating environment) to XACML access 863

requests (or convert a PDP response in XACML to a native format), the XACML architecture 864

includes a context handler. The context handler also provides additional attribute values for the 865

access request context (retrieving them from PIP). In the reference architecture in Figure 4, the 866

context handler is not explicitly shown as a component since we assume that it is an integral part 867

of the PEP or PDP. 868

A request is comprised of attributes extracted from the PIP, minimally sufficient for Target 869

matching. The PIP is shown as one logical store, but in fact may comprise multiple physical 870

stores. In computing a decision, the PDP queries policies stored in a PRP. If the attributes of the 871

request are not sufficient for rule and policy evaluation, the PDP may request the context handler 872

to search the PIP for additional attributes. Information and data stored in the PIP and PRP 873

comprise the access control data and collectively define the current authorization state. 874

 875

Figure 4: XACML Reference Architecture 876

A Policy Administration Point (PAP1) using the XACML policy language creates the access 877

control data stored in the PRP in terms of rules for specifying Policies, PolicySets as a container 878

of Policies, and rule and policy combining algorithms. The PRP may store trusted or untrusted 879

policies. Although not included in the XACML reference architecture, we show a second Policy 880

Administration Point (PAP2) for creating and managing the access control data stored in the PIP. 881

PAP2 implements administrative routines necessary for the creation and management of attribute 882

names and values for users and resources. The Resource Access Point (RAP) implements 883

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 18

routines for performing operations on a resource that is appropriate for the resource type. In the 884

event that the PDP returns a permit decision, the PEP issues a command to the RAP for 885

execution of an operation on resource content. As indicated by the dashed box in Figure 4, the 886

RAP, in addition to the PEP, runs in an application’s operating environment, independent of the 887

PDP and its supporting components. The PDP and its supporting components are typically 888

implemented as modules of a centralized Authorization Server that provides authorization 889

services for multiple types of operations. 890

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 19

4 NGAC Specification 891

NGAC takes a fundamentally different approach from XACML for representing requests, 892

expressing and administering policies, representing and administering attributes, and computing 893

and enforcing decisions. NGAC is defined in terms of a standardized and generic set of relations 894

and functions that are reusable in the expression and enforcement of policies. 895

For purposes of brevity and readability, the NGAC specification is presented as a summary that 896

highlights NGAC’s salient features and should not be considered complete. In some instances, 897

actual NGAC relational details and terms are substituted with others to accommodate a simpler 898

presentation. 899

4.1 Basic Policy and Attribute Elements 900

NGAC’s access control data is comprised of basic elements, containers, and configurable 901

relations. While XACML uses the terms subject, action, and resource, NGAC uses the terms 902

user, operation, and object with similar meanings. In addition to these, NGAC includes 903

processes, administrative operations, and policy classes. Like XACML, NGAC recognizes user 904

and object attributes; however, it treats attributes along with policy class entities as containers. 905

These containers are instrumental in both formulating and administering policies and attributes. 906

NGAC treats users and processes as independent but related entities. NGAC processes can be 907

thought of as simple representations of operating system processes. They have an id, memory, 908

and descriptors for resource allocations (e.g., “handles”). Like an operating system, an NGAC 909

process can utilize system resources (e.g., clipboard) for inter-process communication. Processes 910

through which a user attempts access take on the same attributes as the invoking user. 911

Although an XACML resource is similar to an NGAC object, NGAC uses the term object as an 912

indirect references its data content. Every object is also an object attribute with the same name. 913

Given this one-to-one correspondence, the object can also be identified as an object attribute. 914

That is, every object is by definition an object attribute. The set of objects reflects entities 915

needing protection, such as files, clipboards, email messages, and record fields. 916

Similar to an XACML subject attribute value, NGAC user containers can represent roles, 917

affiliations, or other common characteristics pertinent to policy, such as security clearances. 918

Object containers (attributes) characterize data and other resources by identifying collections of 919

objects, such as those associated with certain projects, applications, or security classifications. 920

Object containers can also represent compound objects, such as folders, inboxes, table columns, 921

or rows, to satisfy the requirements of different data services. Policy class containers are used to 922

group and characterize collections of policy or data services at a broad level, with each container 923

representing a distinct set of related policy elements. Every user, user attribute, and object 924

attribute must be contained in at least one policy class. Policy classes can be mutually exclusive 925

or overlap to various degrees to meet a wide range of policy requirements. 926

NGAC recognizes a generic set of operations that include basic input and output operations (i.e., 927

read and write) that can be performed on the contents of objects that represent data service 928

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 20

resources, and a standard set of administrative operations that can be performed on NGAC 929

access control data that represent policies and attributes. In addition, an NGAC deployment may 930

consider and provide control over other types of data service operations besides the basic 931

input/output operations. Resource operations can also be defined specifically for an operating 932

environment. Administrative operations, on the other hand, pertain only to the creation and 933

deletion of NGAC data elements and relations, and are a stable part of the NGAC framework, 934

regardless of the operating environment. 935

4.2 Relations 936

NGAC does not express policies through rules, but instead through configurations of relations of 937

four types: assignments (define membership in containers), associations (derive privileges), 938

prohibitions (specify privilege exceptions), and obligations (dynamically alter access state). 939

4.2.1 Assignments and Associations 940

NGAC uses a tuple (x, y) to specify the assignment of element x to element y. In this publication 941

we use the notation x→y to denote the same assignment relation. The assignment relation always 942

implies containment (x is contained in y). We denote a chain of one or more assignment relations 943

by “→
+
”.The set of entities used in assignments include users, user attributes, and object 944

attributes (which include all objects), and policy classes. 945

To be able to carry out an operation, one or more access rights are required. As with operations, 946

two types of access rights apply: non-administrative and administrative. 947

Access rights to perform operations are acquired through associations. An association is a triple, 948

denoted by ua---ars---at, where ua is a user attribute, ars is a set of access rights, and at is an 949

attribute, where at may comprise either a user attribute or an object attribute. The attribute at in 950

an association is used as a referent for itself and the policy elements contained by the attribute. 951

Similarly, the first term of the association, attribute ua, is treated as a referent for the users and 952

user attributes contained in ua. The meaning of the association ua---ars---at is that the users 953

contained in ua can execute the access rights in ars on the policy elements referenced by at. The 954

set of policy elements referenced by at is dependent on (and meaningful to) the access rights in 955

ars. 956

Figure 5 illustrates two example assignment and association relations depicted as graphs—one an 957

access control policy configuration with policy class “Project Access” (Figure 5a), and the other 958

a data service configuration with “File Management” as its policy class (Figure 5b). Users and 959

user attributes are on the left side of the graphs, and objects and object attributes are on the right. 960

The arrows represent assignment relations and the dashed lines denote associations. Remember 961

that the set of referenced policy elements is dependent on the access rights in ars. Note that the at 962

attribute of each association is an object attribute and the access rights are read/write. In the 963

association Division---{r}---Projects, the policy elements referenced by Projects are objects o1 964

and o2, meaning that users u1 and u2 can read objects o1 and o2. If we had an association 965

Division---{create assign-to}---Projects, then the policy elements referenced by Projects would 966

be Projects, Project1, and Project2, meaning that users u1 and u2 may (administratively) create 967

assignment relations to Projects, Project1, and Project2.968

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 21

 969

Figure 5: Two Example Assignment and Association Graphs 970

4.2.2 Derived Privileges 971

Collectively associations and assignments indirectly specify privileges of the form (u, ar, e), with 972

the meaning that user u is permitted (or has a capability) to execute the access right ar on 973

element e, where e can represent a user, user attribute, or object attribute. Determining the 974

existence of a privilege (a derived relation) is a requirement of, but as we discuss later, not 975

sufficient in computing an access decision. 976

NGAC includes an algorithm for determining privileges with respect to one or more policy 977

classes and associations. Specifically, (u, ar, e) is a privilege, if and only if, for each policy class 978

pc in which e is contained, the following is true: 979

 The user u is contained by the user attribute of an association; 980

 The element e is contained by the policy element of that association; 981

 The policy element of that association is contained by the policy class pc, and 982

 The access right ar is a member of the access right set of that association. 983

Note that the algorithm for determining privileges applies to configurations that include one or 984

more policy classes. The left and right columns of Table 2 list derived privileges for Figures 5a 985

and 5b, when considered independent of one another. 986

Table 2: Derived Privileges for the Independent Configuration of Figures 5a and 5b 987

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u2, r, o1),

(u2, r, o2), (u2, w, o2), (u2, r, o3), (u2, w, o3)

(u1, r, o2), (u1, w, o2), (u2, r, o2), (u2, w, o2),

(u2, r, o3), (u2, w, o3), (u2, r, o4), (u2, w, o4)

 988

Figure 6 is an illustration of the graphs in Figures 5a and 5b when considered in combination. 989

Note that for the purposes of deriving privileges, user attribute to policy class assignments are 990

not considered, and as such are not shown. 991

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 22

 992

Figure 6: Graphs from Figures 5a and 5b in Combination 993

Table 3 lists the derived privileges for the graphs from Figures 5a and 5b when considered in 994

combination. 995

Table 3: Derived Privileges for the Combined Configuration of Figures 5a and 5b 996

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u2, r, o1), (u2, r, o2), (u2, w, o2), (u2, r, o3), (u2, w, o3),

(u2, r, o4), (u2, w, o4)

 997

Note that (u1, r, o1) is a privilege in Table 2 because o1 is only in policy class Project Access 998

and there exists an association Division---{r}--- Projects, where u1 is in Division, r is in {r}, and 999

o1 is in Projects. Note that (u1, w, o2) is not a privilege in Table 2 because o2 is in both Project 1000

Access and File Management policy classes, and although there exists an association Alice---{r, 1001

w}---o2, where u1 is in Alice, w is in {r, w}, and o2 is in o2 and File Management, no such 1002

association exists with respect to Project Access. 1003

NGAC configurations indirectly specify rules. The access control policy of Figure 5a specifies 1004

that users assigned to either Group1 or Group2 can read objects contained in Projects, but only 1005

Group1 users can write to Project1 objects and only Group2 users can write to Project2 objects. 1006

The Policy further specifies that Group2 users can read/write data objects in Gr2-Secret. While 1007

Figure 5a specifies policies for how its objects can be read and written, the configuration is 1008

considered incomplete in that it does not specify how its users, objects, policy elements, 1009

assignments, and associations were created and can be managed. 1010

Figure 5b depicts an access policy for a File Management data service. User u2 (Bob) has 1011

read/write access to objects assigned to object attributes (Proposals and Reports representing 1012

folders) that are contained in Bob Home (representing his home directory). The configuration 1013

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 23

also shows user u1 (Alice) with read/write access to object o2. This configuration is also 1014

incomplete in that one would expect a File Management data service with capabilities for users 1015

to create and manage their folders and to create and assign objects to their folders. Another 1016

feature common to a File Management data service is the capability for users to grant or give 1017

away access rights to objects that are under their control to other users. 1018

We specify missing management capabilities for the Project Access policy in Section 4.4.1 and 1019

File Management data service in Section 4.5. 1020

Although the graph depicted in figure 6 pertains to the intersection of policies, NGAC employs 1021

the Boolean logics of AND and OR to express the combinations of policies [12]. Figure 7 is a 1022

depiction of an NGAC equivalent configuration of the XACML Policy1 specified in Section 3.4. 1023

Both policies specify that users assigned to Intern can read AND Doctor can read and write 1024

Medical Records that are assigned to the same Ward as the user OR Doctors can read and write 1025

Medical Records assigned to Critical regardless of the Ward in which the Medical Record is 1026

assigned. 1027

 1028

Figure 7: NGAC's Equivalent Expression of XACML Policy1 1029

Figure 7 shows NGAC users and objects that correspond to the XACML subjects and resources 1030

in Table 1 and are assigned to the same attribute values in Table 1. 1031

Table 4: Derived Privileges for the Configuration of Figure 7 1032

(u3, r, o5), (u3, w, o5), (u3, r, o7), (u3, w, o7), (u4, r, o6)

 1033

As a consequence, the derived privileges of Figure 7 (listed in Table 4) are the same as the 1034

authorization state specified in Table 1. 1035

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 24

4.2.3 Prohibitions (Denies) 1036

In addition to assignments and associations, NGAC includes three types of prohibition relations: 1037

user-deny, user attribute-deny, and process-deny. In general, deny relations specify privilege 1038

exceptions. We respectively denote a user-based deny, user attribute-based deny, and process-1039

based deny relation by u_deny(u, ars, pe), ua_deny(ua, ars, pe), and p_deny(p, ars, pe), where u 1040

is a user, ua is a user attribute, p is a process, ars is an access right set, and pe is a policy element 1041

used as a referent for itself and the policy elements contained by the policy element. The 1042

respective meanings of these relations are that user u, users in ua, and process p cannot execute 1043

access rights in ars on policy elements in pe. User-deny relations and user attribute-deny 1044

relations can be created directly by an administrator or dynamically as a consequence of an 1045

obligation (see Section 4.2.4). An administrator, for example, could impose a condition where no 1046

user is able to alter their own Tax Return, in spite of the fact that the user is assigned to an IRS 1047

Auditor user attribute with capabilities to read/write all tax returns. When created through an 1048

obligation, user-deny and user attribute-deny relations can take on dynamic policy conditions. 1049

Such conditions can, for example, provide support for separation of duty policies (if a user 1050

executed capability x, that user would be immediately precluded from being able to perform 1051

capability y). In addition, the policy element component of each prohibition relation can be 1052

specified as its complement, denoted by ¬. The respective meaning of u_deny(u, ars, ¬pe), 1053

ua_deny(ua, ars, ¬pe), and p_deny(p, ars, ¬pe) is that the user u, and any user assigned to ua, 1054

and process p cannot execute the access rights in ars on policy elements not in pe. 1055

Process-deny relations are exclusively created using obligations. Their primary use is in the 1056

enforcement of confinement conditions (e.g., if a process reads Top Secret data, preclude that 1057

process from writing to any object not in Top Secret). 1058

4.2.4 Obligations 1059

Obligations consist of a pair (ep, r) (usually expressed as when ep do r) where ep is an event 1060

pattern and r is a sequence of administrative operations, called a response. The event pattern 1061

specifies conditions that if matched by the context surrounding a process’s successful execution 1062

of an operation on an object (an event), cause the administrative operations of the associated 1063

response to be immediately executed. The context may pertain to and the event pattern may 1064

specify parameters like the user of the process, the operation executed, and the attribute(s) of the 1065

object. 1066

Obligations can specify operational conditions in support of history-based policies and data 1067

services. Such conditions include conflict of interest (if a user reads information from a sensitive 1068

data set, that user is prohibited from reading data from a second data set) and Work Flow 1069

(approving (writing to a field of)) a work item enables a second user to read and approve the 1070

work item). Also, included among history-based policies are those that prevent leakage of data to 1071

unauthorized principals. The use of an obligation to prevent data leakage is discussed in Section 1072

4.5. 1073

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 25

4.3 NGAC Decision Function 1074

The NGAC access decision function controls accesses in terms of processes. The user on whose 1075

behalf the process operates must hold sufficient authority over the policy elements involved. The 1076

function process_user(p) denotes the user associated with process p. 1077

Access requests are of the form (p, op, argseq), where p is a process, op is an operation, and 1078

argseq is a sequence of one or more arguments, which is compatible with the scope of the 1079

operation. That is, an access request comprises an operation and a list of enumerated arguments 1080

that have their number, type, and order dictated by the operation. 1081

The access decision function to determine whether an access request can be granted requires a 1082

mapping from an operation and argument sequence pair to a set of access rights and policy 1083

element pairs (i.e., {(ar, pe)}) the process’s user must hold for the request to be granted. 1084

When determining whether to grant or deny an access request, the authorization decision 1085

function takes into account all privileges and restrictions (denies) that apply to a user and its 1086

processes, which are derived from relevant associations and denies, giving restrictions 1087

precedence over privileges: 1088

A process access request (p, op, argseq) with mapping (op, argseq)→{(ar, pe)}) is granted 1089

iff for each (ari, pei) in {(ar, pe)}, there exists a privilege (u, ari, pei) where u = 1090

process_user(p), and (ari, pei) is not denied for either u or p. 1091

In the context of Figure 6, an access request may be (p, read, o1) where p is u1’s process. The 1092

pair (read, o1) maps to (r, o1). Because there exists a privilege (u1, r, o1) in table 3 and (r, o1) is 1093

not denied for u1 or p, the access request would be granted. Assume the existence of associations 1094

Division---{create assign-to}---Projects, and Bob---{create assign-from}---Bob Home in the 1095

context of Figure 6, and an access request (p, assign, <o4, Project1>) where p is u2’s process. 1096

The pair (assign, <o4, Project1>) maps to {(create assign-from, o4), (create assign-to, Project1)}. 1097

Because privileges (u2, create assign-from, o4) and (u2, create assign-to, Project1) would exist 1098

under the assumption, and (create assign-from, o4) and (create assign-to, Project1) are not denied 1099

for u2 or p, the request would be granted. 1100

4.4 Administrative Considerations 1101

Many access rights categorized as administrative access rights, such as those needed to create a 1102

file and assign it to a folder, arguably seem non-administrative from a usage standpoint. 1103

Nevertheless, from a policy specification standpoint, they are considered administrative (e.g., in 1104

this case, an association with access rights for creating an object and assigning the object to an 1105

object attribute is needed). The main difference between the two types of access rights is that 1106

non-administrative actions pertain to activities on protected resources represented as objects, 1107

while administrative actions pertain to activities on the policy representation comprising the 1108

policy elements and relationships defined within and maintained by NGAC. 1109

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 26

4.4.1 Administrative Associations 1110

In order to execute an administrative operation, the requesting user must possess appropriate 1111

access rights. Just as access rights to perform read/write operations on resource objects are 1112

defined in terms of associations, so too are capabilities to perform administrative operations on 1113

policy elements and relations. In comparison with non-administrative access rights, where 1114

resource operations are synonymous with the access rights needed to carry out those operations 1115

(e.g., a “read” operation corresponding to an “r” access right), the authority associated with an 1116

administrative access right is not necessarily synonymous with an administrative operation. 1117

Instead, the authority stemming from one or more administrative access rights may be required 1118

for a single operation to be authorized. 1119

Some administrative access rights are explicitly divided into two parts, as denoted by the “from” 1120

and “to” suffixes. Both parts of the authority must be held to carry out the implied administrative 1121

operation. 1122

For example, consider the following two associations that provide administrative capabilities in 1123

support of the “Project Access” policy configuration depicted in Figure 5a: 1124

ProjectAccessAdmin --- {create-u-to, delete-u-from, create-ua-to, delete-ua-from, create-uua- 1125

 from, create-uua-to, delete-uua-from, create-uaua-from, create-uaua-to, delete-uaua- 1126

 from, delete-uaua-to }---Division 1127

ProjectAccessAdmin --- {create-o-to, delete-o-from, create-oa-to, delete-oa-to, create ooa- 1128

 from, create ooa-to, delete-ooa-from, create-oaoa-from, create-oaoa-to, delete-oaoa-from, 1129

 delete-oaoa-to }--- Projects 1130

The meaning of the first association is that users in ProjectAccessAdmin can create and delete 1131

users, user attributes, user to user-attribute (uua), and user-attribute to user-attribute (uaua) 1132

assignments in Division. The second association similarly establishes privileges to create and 1133

delete objects(o), object attributes(oa), object to object-attribute (ooa), and object-attribute to 1134

object-attribute (oaoa) assignments in Projects. 1135

With the preceding two associations, the next two associations complete the configuration begun 1136

by the configuration of Figure 5a, enabling complete administration. The associations enable 1137

users in ProjectAccessAdmin to create and delete associations from user attributes in Division to 1138

object attributes in Projects, with allocated read and/or write access rights. 1139

ProjectAccessAdmin --- {create-assoc-from, delete-assoc-from} --- Division. 1140

ProjectAccessAdmin --- {create-assoc-to, delete-assoc-to, r-allocate, w-allocate} --- Projects. 1141

4.4.2 Delegation 1142

The question remains, how are administrative capabilities created? The answer begins with a 1143

superuser with capabilities to perform all administrative operations on all access control data. 1144

The initial state consists of an NGAC configuration with empty data elements, attributes, and 1145

relations. A superuser either can directly create administrative capabilities or more practically 1146

can create administrators and delegate to them capabilities to create and delete administrative 1147

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 27

privileges. Delegation and rescinding of administrative capabilities is achieved through creating 1148

and deleting associations. The principle followed for allocating access rights via an association is 1149

that the creator of the association must have been allocated the access right over the attribute in 1150

question (as well as the necessary create-assoc-from and create-assoc-to rights) in order to 1151

delegate them. The strategy enables a systematic approach to the creation of administrative 1152

attributes and delegation of administrative capabilities, beginning with a superuser and ending 1153

with users with administrative and data service capabilities. 1154

4.4.3 NGAC Administrative Commands and Routines 1155

Administrative commands and routines are the means by which policy specifications are formed. 1156

Each access request involving an administrative operation corresponds on a one-to-one basis to 1157

an administrative routine, which uses the sequence of arguments in the access request to perform 1158

the access. As described earlier in this section, the access decision function grants the access 1159

request (and initiation of the respective administrative routine) only if the process holds all 1160

prohibition-free access rights over the items in the argument sequence needed to carry out the 1161

access. The administrative routine, in turn, uses one or more administrative commands to 1162

perform the access. 1163

Administrative commands describe rudimentary operations that alter the policy elements and 1164

relationships of NGAC, which comprise the authorization state. An administrative command is 1165

represented as a parameterized procedure, with a body that describes state changes to policy that 1166

occur when the described behavior is carried out (e.g., a policy element or relation Y changes 1167

state to Y′ when some function f is applied). Administrative commands are specified using the 1168

following format: 1169

 cmdname (x1: type1, x2: type2, …, xk: typek) 1170

 …preconditions … 1171

 { 1172

 Y′= f (Y, x1, x2, …, xk) 1173

 } 1174

Consider, as an example, the administrative command CreateAssoc shown below, which 1175

specifies the creation of an association. The preconditions here stipulate membership of the x, y, 1176

and z parameters respectively to the user attributes (UA), access right sets (ARs), and policy 1177

elements (PE) elements of the model. The body describes the addition of the tuple (x, y, z) to the 1178

set of associations (ASSOC) relation, which changes the state of the relation to ASSOC′. 1179

 createAssoc (x, y, z) 1180

 x ∈ UA ⋀ y ∈ ARs ⋀ z ∈ PE ⋀ (x, y, z) ∉ ASSOC 1181

 { 1182

 ASSOC′ = ASSOC ⋃ {(x, y, z)} 1183

 } 1184

Each administrative command entails a modification to the NGAC configuration that involves 1185

the creation or deletion of a policy element, the creation or deletion of an assignment between 1186

policy elements, or the creation or deletion of an association, prohibition, or obligation. 1187

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 28

Compared to administrative routines, administrative commands are elementary. That is, 1188

administrative commands provide the foundation for the NGAC framework, while administrative 1189

routines use one or more administrative commands to carry out their function. 1190

An administrative routine consists mainly of a parameterized interface and a sequence of 1191

administrative command invocations. Administrative routines build upon administrative 1192

commands to define the protection capabilities of the NGAC model. The body of an 1193

administrative routine is executed as an atomic transaction—an error or lack of capabilities that 1194

causes any of the constituent commands to fail execution causes the entire routine to fail, 1195

producing the same effect as though none of the commands were ever executed. Administrative 1196

routines are specified using the following format: 1197

 1198

rtnname (x1: type1, x2: type2, …, xk: typek) 1199

 … preconditions … 1200

{ 1201

cmd1; 1202

conditiona cmd2, cmd3; 1203

. . . 1204

conditionz cmdn; 1205

 } 1206

 1207

The name of the administrative routine, rtnname, precedes the routine’s declaration of formal 1208

parameters, x1: type1, x2: type2, …, xk: typek (k ≥ 0). Each formal parameter of an 1209

administrative routine can serve as an argument in any of the administrative command 1210

invocations, cmd1, cmd2, …, cmdn (n ≥ 0), that make up the body of the routine, and also in any 1211

condition prepended to a command. As with an administrative command, the body of an 1212

administrative routine is prefixed by preconditions, which in general ensure that the arguments 1213

supplied to the routine are valid, and that certain properties on which the routine relies are 1214

maintained. As illustrated above, an optional condition can precede one or more of the 1215

commands. 1216

For example, when a new user is created, an administrator typically creates a number of 1217

containers, links them together, and grants the authority for the user to access them as its work 1218

space. Rather than manually performing each step of this sequence of administrative actions for 1219

each new user, the entire sequence of repeated actions can be defined as a single administrative 1220

routine and executed in its entirety as an atomic action. 1221

To execute the routine, the user (administrative) must possess the necessary capabilities to 1222

execute each administrative command. 1223

4.5 Arbitrary Data Service Operations and Policies 1224

NGAC recognizes administrative operations for the creation and management of its data 1225

elements and relations that represent policies and attributes, and basic input and output 1226

operations (e.g., read and write) that can be performed on objects that represent data service 1227

resources. In accommodating data services, NGAC may establish and provide control over other 1228

types of operations, such as send, submit, approve, and create folder. However, it does not 1229

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 29

necessarily need to do so. This is because the basic data service capabilities to consume, 1230

manipulate, manage, and distribute access rights on data can be attained as combinations of 1231

read/write operations on data and administrative operations on data elements, attributes, and 1232

relations that may alter the access state for which users can read/write data. 1233

Consider the following administrative routine that creates a “file management” user and provides 1234

the user with capabilities to create and manage objects and folders, and control and share access 1235

to objects in the context of Figure 5b. The routine assumes the pre-existence of the user attribute 1236

“Users” assigned to the “File Management” policy class as shown in Figure 5b. 1237

create-file-mgmt-user(user-id, user-name, user-home) { 1238

 createUAinUA(user-name, Users); 1239

 createUinUA(user-id, user-name); 1240

 createOAinPC(user-home, File Management); 1241

 createAssoc(user-name, {r, w}, user-home); 1242

 createAssoc(user-name, {create-o-to, delete-o-from}, user-home); 1243

 createAssoc(user-name, {create-ooa-from, create-ooa-to, delete-ooa-from, create-oaoa- 1244

 from, create-oaoa-to, delete-oaoa-from}, user-home); 1245

 createAssoc(user-name, {create-assoc-from, delete-assoc-from}, Users); 1246

 createAssoc(user-name, {create-assoc-to, delete-assoc-to, r-allocate, w-allocate}, user- 1247

 home);} 1248

This routine with parameters (u1, Bob and Bob Home) could have been used to create “file 1249

management” data service capabilities for user u1 already in Figure 5b. Through the routine the 1250

user attribute “Bob” is created and assigned to “Users”, and user u1 is created and assigned to 1251

“Bob”. In addition, the object attribute “Bob Home” is created and assigned to policy class “File 1252

Management”. In addition, user u1 is delegated administrative capabilities to create, organize, 1253

and delete object attributes (presented folders) in Bob Home, and u1 is provided with capabilities 1254

to create, read, write, and delete objects that correspond to files and place those files into his 1255

folders. Finally, u1 is provided with discretionary capabilities to “grant” to other users in the 1256

“Users” container capabilities to perform read/write operations on individual files or to all files 1257

in a folder in his Home. 1258

As already indicated by Figure 5b, and subsequent to the execution of this administrative routine, 1259

user u1 can grant user u2 (Alice) read/write access to object o2 by using the following routine. 1260

 1261

 grant(user-name, rights, file/folder) { 1262

 createAssoc(user-name, rights, file/folder)} 1263

Through this routine Bob could, under his discretion, “grant” Alice read access to o3. However, 1264

even if Bob were to do so, Alice would not be able to read o3. This is because of a lack of a 1265

privilege (u1, r, o3) due to o3’s containment in the “Project Access” policy class. Although Bob 1266

cannot successfully provide Alice read access to object o3 through his delegated “grant” 1267

capability, Bob could “leak” the capability to read the content of o3 to Alice. This could be 1268

achieved by Bob first reading the content of o3 and then writing that content to o2. Even if Bob 1269

was trusted not to perform such actions, a malicious process acting on Bob’s behalf could do so, 1270

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 30

without Bob’s knowledge. To prevent this leakage we add the following obligation to our 1271

configuration: 1272

When any process p performs (r, o) where o
+
 Gr2-Secret do create p-deny(p, {w}, ¬Gr2-1273

Secret) 1274

The effect of this obligation will prevent a process (and its user) from reading the contents of any 1275

object in Gr2-Secret and writing it to an object in a different container (not in Gr2-Secret). 1276

4.6 NGAC Functional Architecture 1277

NGAC’s functional architecture (shown in Figure Error! Reference source not found.8), like 1278

XACML’s, encompasses four layers of functional decomposition: Enforcement, Decision, 1279

Administration, and Access Control Data, and involves several components that work together to 1280

bring about policy-preserving access and data services. Among these components is a PEP that 1281

traps application requests. An access request includes a process id, user id, operation, and a 1282

sequence of one or more operands mandated by the operation that pertain to either a data 1283

resource or an access control data element or relation. Administrative operational routines are 1284

implemented in the PAP and read/write routines are implemented in the RAP. 1285

 1286

Figure 8: NGAC Standard Functional Architecture 1287

To determine whether to grant or deny, the PEP submits the request to a PDP. The PDP 1288

computes a decision based on current configuration of data elements and relations stored in the 1289

PIP, via the PAP. Unlike the XACML architecture, the access request information from an 1290

NGAC PEP together with the NGAC relations (retrieved by the PDP) provide the full context for 1291

arriving at a decision. The PDP returns a decision of grant or deny to the PEP. If access is 1292

granted and the operation was read/write, the PDP also returns the physical location where the 1293

object’s content resides, the PEP issues a command to the appropriate RAP to execute the 1294

operation on the content, and the RAP returns the status. In the case of a read operation, the RAP 1295

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 31

also returns the data type of the content (e.g., Powerpoint) and the PEP invokes the correct data 1296

service application for its consumption. If the request pertained to an administrative operation 1297

and the decision was grant, the PDP issues a command to the PAP for execution of the operation 1298

on the data element or relation stored in the PIP, and the PAP returns the status to the PDP, 1299

which in turn relays the status to the PEP. If the returned status by either the RAP or PAP is 1300

“successful”, the PEP submits the context of the access to the Event Processing Point (EPP). If 1301

the context matches an event pattern of an obligation, the EPP automatically executes the 1302

administrative operations of that obligation, potentially changing the access state. Note that 1303

NGAC is data type agnostic. It perceives accessible entities as either data or access control data 1304

elements or relations, and it is not until after the access process is completed that the actual type 1305

of the data matters to the application. 1306

 1307

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 32

5 Analysis 1308

XACML is similar to NGAC insofar as they both provide flexible, mechanism-independent 1309

representations of policy rules that may vary in granularity, and they employ attributes in 1310

computing decisions. However, XACML and NGAC differ significantly in their expression of 1311

policies, treatment of attributes, computation of decisions, and representation of requests. In this 1312

section, we analyze these similarities and differences with respect to the degree of separation of 1313

access control logic from proprietary operating environments and four ABAC considerations 1314

identified in NIST SP 800-162: operational efficiency, attribute and policy management, scope 1315

and type of policy support, and support for administrative review and resource discovery. 1316

For the purposes of comparison we normalize some XACML and NGAC terminology. 1317

5.1 Separation of Access Control Functionality from Proprietary Operating 1318
Environments 1319

XACML and NGAC both separate access control functionality of data services from proprietary 1320

operating environments, but to different degrees. An XACML deployment may consist of 1321

multiple operating environments, each hosting one or more applications and sharing a common 1322

authorization infrastructure. Each of these operating environments implements its own method of 1323

authentication, and in support of its applications implements its own operational routines. 1324

Application specific operations included in XACML access requests correspond one-to-one with 1325

operational routines implemented in supporting operating environments. It is for this reason that 1326

an XACML-enabled application is dependent on an operating environment PEP. Requests are 1327

issued from, and decisions are returned to, an operating environment-specific PEP. 1328

Although an NGAC deployment could include a PEP with an Application Programming 1329

Interface (API) that recognizes operating environment-specific operations (e.g., send and 1330

forward operations for a messaging system), it does not necessarily need to do so. NGAC 1331

includes a PEP with an API that supports a set of generic, operating environment-agnostic 1332

operations (read, write, create, and delete policy elements and relations). This API enables a 1333

common, centralized PEP to be implemented to serve the requests of multiple applications. 1334

Although the generic operations may not meet the requirements of every application (e.g., 1335

transactions that perform computations on attribute values), calls from many applications can be 1336

accommodated. This includes operations that generically pertain to consumption, manipulation, 1337

and management of data, and distribution of access rights on data. For example, the “send” 1338

operation of a messaging data service could be implemented through a series of administrative 1339

operations on NGAC data elements and relations, where “inboxes” and “outboxes” are 1340

represented as object attributes. The administrative operations create and assign a message (an 1341

object) to the “outbox” of the sender and the “inbox” of the recipient, where the sender and 1342

recipient have read access rights to objects contained in their respective “outbox” and “inbox”. 1343

The file management data service described in Section 4 is another example of a data service that 1344

supports application specific operations for creating and managing files and folders implemented 1345

though NGAC generic operations. Still others could include operations in support of workflow, 1346

calendar, record management, and time and attendance. 1347

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 33

XACML does not envisage the design of a PEP that is data service agnostic. In other words, a 1348

PEP under the XACML architecture is tightly coupled to a specific operating environment for 1349

which it was designed to enforce access. However, based on the deployment feature described 1350

above, it is possible for the NGAC PEP to provide a level of abstraction between application 1351

calls and underlying object types and their associated privileges. 1352

As a consequence of this abstraction capability, NGAC can completely displace the need for an 1353

access control mechanism of an operating environment in that through the same API, set of 1354

operations, access control data elements and relations, and functional components, arbitrary data 1355

services can be delivered to users, and arbitrary, mission-tailored access control policies can be 1356

expressed and enforced over executions of application calls. 1357

5.2 Scope and Type of Policy Support 1358

Access control policy is a broad term that pertains to many types of controls. For purposes of this 1359

report, we subdivide these controls into two broad categories: Discretionary Access Control 1360

(DAC) and Mandatory Access Control (MAC). In addition, we further categorize MAC into two 1361

subcategories, those that support confinement and those that do not. 1362

DAC is an administrative policy that permits system users to allow or disallow other users’ 1363

access to resources/objects under their control. The means of restricting access to objects is often 1364

based on the identities of users and/or the attributes to which they are assigned. The controls are 1365

discretionary in the sense that a user with access to a resource is capable of passing that access 1366

on to other users without the intercession of a system administrator [15]. Although XACML can 1367

theoretically implement DAC policies, it is not efficient. Consider the propagation feature of 1368

DAC. DAC permits owners/creators of objects to grant some or all of their capabilities to other 1369

users, and the grantees can further propagate those capabilities on to other users. The overall 1370

DAC feature to grant privileges to another user and the ability of the grantee to propagate those 1371

privileges cannot be supported in XACML syntax using “Access Policies” alone. XACML is 1372

geared for specifying global access policies in terms of attributes. Since the only user attribute 1373

designator is “access-subject”, there is no predefined attribute category to denote the 1374

owner/creator of an object. 1375

Therefore, all the capabilities of the owner/creator of an object together with administrative 1376

capabilities to grant those privileges have to be specified using a Trusted Administrative policy. 1377

The capabilities held by owner/creator can be captured by designating the owner/creator of the 1378

object as the “access-subject”, and the administrative capability to grant privileges to others can 1379

be captured by designating the owner/creator as a delegate in that policy type. The creation of 1380

this trusted administrative policy, in turn, enables creation of derived administrative policies with 1381

the owner/creator as the policy issuer with the specified set of capabilities. Further, the 1382

specification of a “delegate” in this derived administrative policy (labeled NOT TRUSTED) 1383

provides a means for the owner/creator to grant capabilities to other users, as well as the ability 1384

for the grantee to propagate those capabilities to other users. However, while it is theoretically 1385

possible to implement DAC by leveraging XACML’s delegation feature, this approach involves 1386

significant administrative overhead. The solution requires the specification of a trusted 1387

administrative policy and a set of derived administrative policies for every object owner/creator, 1388

and for all grantees of the capabilities. 1389

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 34

NGAC offers a flexible means of providing users with administrative capabilities to include 1390

those necessary for the implementation of different flavors of DAC. As shown by the execution 1391

of the administrative routine “create-file-mgmt-user(user-id, user-name, user-home)” in Section 1392

4.5, user u1 (Bob) is created and given “File Management” data service capabilities. These 1393

capabilities include being able to create objects and assign them to his home, and consequently, 1394

having read/write access to those objects. In addition, Bob is given ownership and control 1395

capabilities over objects in his home (i.e., Bob can grant other users (e.g., Alice) read/write 1396

access to any object in his home). Because Alice is also a “File Management” user, Alice could 1397

create a copy of the object, place it in her home, and grant other users access to her copy. 1398

In contrast to DAC, MAC enables ordinary users’ capabilities to execute resource operations on 1399

resource objects, but not administrative capabilities that may influence those capabilities. MAC 1400

policies unavoidably impose rules on users in performing operations on resource objects. 1401

Expression of MAC policies is perhaps XACML’s strongest suit. XACML can specify rules in 1402

terms of attribute values that can be of varying types, such as strings and integers. There are 1403

undoubtedly certain policies that are expressible in terms of these rules that cannot be easily 1404

accommodated by NGAC. For example, a financial transaction may pertain to adding a person’s 1405

credit limit to their account balance. XACML also takes into consideration environmental 1406

attributes in expressing policies, and NGAC does not directly support such policies. These 1407

environmental-driven policies are dynamic in nature in that the authorization state can change 1408

without the involvement of any administrative action. For instance, the threat level can change 1409

from “Low” to “High”. XACML also includes the notion of an obligation that directs a PEP to 1410

take an action prior to or after an access request is approved or denied. XACML obligation can 1411

complement and refine MAC policies in a number of ways. While NGAC also uses the term 1412

obligation, an NGAC obligation refers to a different policy construct. 1413

MAC policies are often dependent on and include administrative policies. This is especially true 1414

in a federated or collaborative environment, where governance policies require different 1415

organizational entities to have different responsibilities for administering different aspects of 1416

policies and their dependent attributes. It is also often desirable to be able to express policies that 1417

prevent combinations of resource capabilities and administrative capabilities—for example, a 1418

policy that would prevent an administrator from granting him/herself access to sensitive 1419

resources. XACML is ill suited to naturally express such policies. Consider the MAC policy 1420

depicted by Figure 5a. Although XACML can certainly express and enforce this policy, it cannot 1421

easily express policies as to who can assign users to the various groups (attributes), while NGAC 1422

can. NGAC can create administrative attributes and provide users with administrative 1423

capabilities down to the granularity of a single configuration element. Furthermore, NGAC can 1424

deny administrative capabilities down to the same granularity. 1425

Although XACML has been shown to be capable of expressing aspects of standard RBAC [1] 1426

through an XACML profile [16], the profile falls short of demonstrating support for dynamic 1427

separation of duty, a key feature used for accommodating the principle of least privilege, and 1428

separation of duty, a key feature for combatting fraud. Annex B of Draft standard Next 1429

Generation Access Control – Generic Operations and Data Structures (NGAC-GOADS) [20] 1430

demonstrates NGAC support for all aspects of the RBAC standard. The appendix also 1431

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 35

demonstrates support for the Chinese wall policy [4], which cannot be entirely accommodated by 1432

XACML. 1433

NGAC has shown support for history-based separation of duty [7]. Simon and Zurko, in their 1434

seminal paper on separation of duty [19], describe history-based separation of duty as the most 1435

accommodating form of separation of duty, subsuming the policy objectives of other forms. 1436

Other history-based policies that can be accommodated by NGAC include two-person control, 1437

workflow, and conflict-of-interest. 1438

Despite the use of attributes, the policies discussed thus far have resulted in a user-based 1439

authorization state. In other words, the policies and attributes together constitute an authorization 1440

state of the form {(u, ar, o)}, where user u is authorized to access object o under the access right 1441

ar. Such policies ignore the fact that processes, not users, actually access object content. In 1442

general, user-based authorization controls (whether MAC or DAC) share a weakness: their 1443

inability to prevent the “leakage” of data to unauthorized principals through malware, or 1444

malicious or complacent user actions. 1445

To illustrate this weakness, assume the following authorization state {(u1, r, o1), (u1, w, o2), and 1446

(u2, r, o2)}. Note that it is impossible to determine if u2 can read the content of o1. Under one 1447

scenario, u1 can read and subsequently write the contents of o1 to o2. Even if policy depended 1448

on “trust in users”, we must all but assume the existence of a Trojan horse that can easily thwart 1449

policy. This threat exists because, in reality, users do not perform operations on objects, but 1450

under a user’s capabilities, processes perform operations (actions) on the content of objects 1451

(resources). Therefore, a program executed by u1 can read the contents of o1 and, without u1’s 1452

further action or knowledge, write that content to o2. Note that one cannot prevent this leakage 1453

even with the addition of a user-based deny condition or relation NOT (u2, r, o1). The 1454

importance of preventing inappropriate leakage of data (often called confinement) was 1455

recognized as early as the 1970s, with the establishment of the Bell and LaPadula security model 1456

[3] and the specific MAC policy defined in Trusted Computer Security Evaluation Criteria 1457

(TCSEC) [5]. 1458

Because XACML does not allow the specification and enforcement of policies that pertain to 1459

processes in isolation of their users, it excludes or imposes undue constraints on users in regard 1460

to MAC confinement policies. Another drawback of XACML is that its PDP is stateless, which 1461

places limitations on the policies that can be specified and enforced. Although XACML includes 1462

the concept of an obligation, it is not used to alter authorization state. 1463

Consider the following XACML TCSEC MAC policy specification: 1464

<Policy PolicyId = “Policy 3” rule-combining-algorithm=”only-one-applicable”> 1465
 // TCSEC MAC Policy Specification // 1466

 <Target> /* Policy applies to all subjects with clearance levels – Top-Secret, Secret, or 1467

 Unclassified and resources with classification levels – Top-Secret, Secret, or 1468

 Unclassified for both “read” and “write” actions */ 1469

 /* :Attribute-Category : Attribute ID : Attribute Value */ 1470

 :access-subject :Clearance :Top-Secret 1471

 :access-subject :Clearance :Secret 1472

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 36

 :access-subject :Clearance :Unclassified 1473

 :resource :Classification :Top-Secret 1474

 :resource :Classification :Secret 1475

 :resource :Classification :Unclassified 1476

 :action :action-id :read 1477

 :action :action-id :write 1478

 </Target> 1479

 1480
 /* Rule 1 and Rule 2 apply to permissible and non-permissible “reads” */ 1481

 <Rule RuleId = “Rule 1” Effect=”Permit”> 1482
 <Target> 1483

 /* :Attribute-Category : Attribute ID :Attribute Value */ 1484

 :action :action-id :read 1485

 </Target> 1486

 <Condition> 1487

 Function: string-greater-or-equal 1488

 /* :Attribute-Category :Attribute ID 1489

 :access-subject :Clearance 1490

 :resource :Classification 1491

 </Condition> 1492

 </Rule> 1493

 <Rule RuleId = “Rule 2” Effect=”Deny”> 1494
 <Target> 1495

 /* :Attribute-Category :Attribute ID : Attribute Value */ 1496

 :action :action-id :read 1497

 </Target> 1498

 <Condition> 1499

 Function: string-less 1500

 /* :Attribute-Category : Attribute ID 1501

 :access-subject :Clearance 1502

 :resource :Classification 1503

 </Condition> 1504

 </Rule> 1505

 1506

 /* Rule 3 & Rule 4 apply to permissible and non-permissible “writes” */ 1507

 <Rule RuleId = “Rule 3” Effect=”Permit”> 1508
 <Target> 1509

 /* :Attribute-Category : Attribute ID : Attribute Value */ 1510

 :action :action-id :write 1511

 </Target> 1512

 <Condition> 1513

 Function: string-less-or-equal 1514

 /* :Attribute-Category : Attribute ID 1515

 :access-subject :Clearance 1516

 :resource :Classification 1517

 </Condition> 1518

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 37

 </Rule> 1519

 <Rule RuleId = “Rule 4” Effect=”Deny”> 1520
 <Target> 1521

 /* :Attribute-Category : Attribute ID : Attribute Value */ 1522

 :action :action-id :write 1523

 </Target> 1524

 <Condition> 1525

 Function: string-greater 1526

 /* :Attribute-Category : Attribute ID 1527

 :access-subject :Clearance 1528

 :resource :Classification 1529

 </Condition> 1530

 </Rule> 1531

 </Policy> 1532

 1533

Assuming that a user was assigned to Top Secret, Secret, or Unclassified, Policy3 would indeed 1534

enforce the TCSEC MAC policy, but would prevent a user from ever writing to a resource below 1535

the user’s clearance level. 1536

Now consider NGAC’s specification of the same MAC policy, shown in Figure 9, where we 1537

assume users (not shown) are directly assigned to Top Secret or Secret (on the right side) and 1538

objects are directly assigned to Top Secret or Secret (on the left side). 1539

 1540

Figure 9: NGAC's Partial Expression of TCSEC MAC 1541

The assignments and associations of the graph specify Top Secret users can read and write Secret 1542

and Top Secret objects, and Secret users can read Secret objects and write to Secret and Top 1543

Secret objects. Note that the assignments and associations alone do not prevent the leakage of 1544

data of a higher classification to a lower classification. With the following two obligations, 1545

NGAC can prevent illicit leakage of data, while allowing the user the full set of capabilities 1546

permitted by the assignments and associations. In other words, a user could read Top Secret data 1547

and write to Secret data in the same session, but through two different processes. 1548

(1) when process p reads o
+
TopSecret do create p-deny(p, {w},¬Top Secret); 1549

(2) when process p reads o
+
Secret do create p-deny(p, {w}, ¬Secret-Top Secret). 1550

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 38

The first obligation specifies: when a process reads an object contained in Top Secret, deny the 1551

process from writing to any object outside the Top Secret (object attribute) container. Similarly, 1552

the second obligation specifies: when a process reads an object contained in the Secret-Top 1553

Secret container, deny the process from writing to any object outside the Secret-Top Secret 1554

container. 1555

Without support for confinement, XACML is arguably incapable of enforcement of a wide 1556

variety of policies. These confinement-dependent policies include some instances of RBAC, e.g., 1557

“only doctors can read medical records”, ORCON and Privacy [10], e.g., “I know who can 1558

currently read my data or personal information”, or conflict of interest [4], e.g., “a user with 1559

knowledge of information within one dataset cannot read information in another dataset”. 1560

Through imposing process level controls in conjunction with obligations, NGAC has shown [7] 1561

support for these and other confinement-dependent MAC controls. 1562

Although XACML and NGAC have the ability to combine policies, their motivations are 1563

different. XACML’s motivation is to resolve conflicts. That is, policies and rules may have 1564

different Effects (Permit or Deny), which must be resolved during evaluation by selectively 1565

applying one of several combining algorithms. NGAC’s motivation is to ensure the adherence of 1566

combinations of multiple policies when computing a decision (e.g., DAC and RBAC). 1567

5.3 Operational Efficiency 1568

While XACML and NGAC are similar in that they selectively identify and evaluate policies and 1569

conditions that pertain to a request, they differ significantly in their approach. An XACML 1570

request is a collection of attribute name-value pairs for the subject (user), action, resource, and 1571

environment that must be translated to an XACML canonical form for PDP consumption. 1572

XACML identifies applicable policies and rules within policies by matching attributes to 1573

Targets. The entire process involves collecting attributes and matching Target conditions over all 1574

policies (trusted and untrusted access policies) and all rules in applicable policies, issuing 1575

administrative requests (for determining a chain of trust for applicable untrusted access policies). 1576

If the attributes are not sufficient for the evaluation of an applicable policy or rule, the PDP may 1577

search for additional attributes. The access process involves searching at least two data stores 1578

(PIP and PRP). The PDP evaluates each applicable rule in a policy and applies a combining 1579

algorithm in rendering a policy level decision. The process continues over all applicable policies 1580

and renders an ultimate decision by applying a combining algorithm over the evaluation results 1581

of the policies. The PDP response is converted from its canonical form back to the native form. 1582

NGAC is inherently more operationally efficient. In response to an access request, a decision is 1583

computed using access control data stored in one database. NGAC identifies relevant policies 1584

and attributes directly through assignment relations. Like XACML, NGAC combines policies. 1585

However, unlike XACML, it does not compute and then combine multiple local decisions, but 1586

rather takes multiple policies into consideration when determining the existence of an 1587

appropriate privilege. If such a privilege does exist and no exceptions (prohibitions) exist, the 1588

request is granted, otherwise it is denied. Like policies and attributes, prohibitions are found 1589

through relations and not search. NGAC does not include a context handler for converting 1590

requests and decisions to and from its canonical form or for retrieving attributes. Although 1591

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 39

considered a component of its access control process, obligations do not come into play until 1592

after a decision has been rendered and data has been successfully altered or consumed. 1593

5.4 Attribute and Policy Management 1594

XACML and NGAC both offer a delegation mechanism in support of decentralized 1595

administration of access policies. Both allow an authority (delegator) to delegate all or parts of 1596

its own authority or someone else's authority to another user (delegate). Unlike NGAC, 1597

XACML’s delegation method is a partial solution. It is dependent on trusted and untrusted 1598

policies, where trusted policies are assumed valid, and their origin is established outside the 1599

delegation model. XACML enables policy statements to be written by multiple writers. Although 1600

XACML facilitates the independent writing, collection, and combination of policy components, 1601

XACML does not describe any normative way to coordinate the creation and modification of 1602

policy components among these writers. NGAC enables a systematic approach to the creation of 1603

administrative responsibilities. The approach begins with a single administrator that can create 1604

and delegate administrative capabilities to include further delegation authority to intermediate 1605

administrators. The process ends with users with data service, policy, and attribute management 1606

capabilities. 1607

Although one could imagine a means of administering attributes through the use of XACML 1608

policies, in practice the creation of attribute values and subject and resource assignments to those 1609

attributes is typically performed in different venues without any notion of coordination or 1610

governance. 1611

Because XACML is implemented in XML, it inherits XML’s benefits and drawbacks. The 1612

flexibility and expressiveness of XACML, while powerful, make the specification of policy 1613

complex and verbose [12]. Applying XACML in a heterogeneous environment requires fully 1614

specified data type and function definitions that produce a lengthy textual document, even if the 1615

actual policy rules are trivial. In general, platform-independent policies expressed in an abstract 1616

language are difficult to create and maintain by resource administrators [14]. Unlike XACML, 1617

NGAC is a relations-based standard, which avoids the syntactic and semantic complexity in 1618

defining an abstract language for expressing platform-independent policies [12]. NGAC policies 1619

are expressed in terms of configuration elements that are maintained at a centralized point and 1620

typically rendered and manipulated graphically. For example, to describe hierarchical relations 1621

between attributes, NGAC requires only the addition of links representing assignment relations 1622

between them; in XACML, relations need to be inserted in precise syntactic order. 1623

NGAC’s ability to express policies graphically aids in the management of policy expressions; 1624

administrators can “see” how the managed attributes are related to each other, as well as the 1625

policies under which the attributes are covered. 1626

XACML does not allow policies to be modified by ordinary users. NGAC manages its access 1627

control data (policies and attributes) through a standard set of administrative operations, applying 1628

the same PEP interface and decision making function it uses for accessing its objects (resources). 1629

In other words, NGAC does not make a distinction between ordinary users and administrators; 1630

users possess varying flavors of capabilities to access resource objects and access control data 1631

objects. On one extreme a user may have only capabilities for administering a mandatory policy, 1632

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 40

and denied the ability to provision their access to resources governed by that policy. On the other 1633

extreme users may have total control over their own data and be responsible for setting up their 1634

own policies. Examples of the latter extreme include social networking, messaging, and calendar 1635

application capabilities. 1636

XACML’s ability to specify policies as conditions provides policy expression efficiency. 1637

Consider the NGAC expression, shown in Figure 7, of the equivalent XACML Policy1 specified 1638

in Section 3.4. NGAC expresses the policy using five association relations, while XACML uses 1639

just three rules. Note that as the number of Wards that are considered by the policy increases, so 1640

will the number of NGAC association relations, but the number of XACML rules will always 1641

remain the same. Recognize that for this policy, the number of attribute assignments is the same 1642

for XACML and NGAC. On the other hand, for some policies, the number of XACML attribute 1643

assignments can far exceed those necessary for an NGAC equivalent policy. Consider the 1644

TCSEC MAC Policy expressed using XACML rules and NGAC relations specified in Section 1645

5.2. Note that under the NGAC configuration there is no need to directly specify policy or 1646

attributes regarding uncleared users or unclassified objects. More significantly, NGAC requires 1647

far fewer attribute assignments. For the XACML TCSEC MAC policy to work, all resources are 1648

required to be assigned to Unclassified, Secret, or Top Secret attributes. For the NGAC TCSEC 1649

MAC policy to work, only objects that are actually classified are required to be assigned to 1650

Secret or Top Secret attributes. 1651

5.5 Administrative Review and Resource Discovery 1652

A desired feature of access controls is review of capabilities of a user/subject and access control 1653

entries of an object/resource [15], [11]. This feature is also referred to as “before the fact audit” 1654

and resource discovery. “Before the fact audit” has been suggested by some as one of RBAC’s 1655

most prominent features [18], and includes being able to review the capabilities of a user or the 1656

consequences of assigning a user to a role. It also includes the capability for a user to discover or 1657

see accessible resources. Being able to review the access control entries of an object/resource is 1658

equally important. Who are the users/subjects that can access this object/resource and what are 1659

the consequences of assigning an object/resource to an attribute or deleting an assignment? 1660

NGAC supports efficient algorithms for both per-user and per-object review. Per-object review 1661

of access control entries (u, op), where u is a user and op is an operation, is clearly not as 1662

efficient as a pure access control list (ACL) mechanism, and per-user review of capabilities (op, 1663

o), where op is an operation and o is an object, is not as efficient as that of RBAC. However, this 1664

is due to NGAC’s consideration of conducting review in a multiple policy class environment. 1665

NGAC can efficiently support both per-object and per-user reviews of combined policies, where 1666

RBAC and ACL mechanisms can do only one type of review efficiently. Rule-based 1667

mechanisms, such as XACML, although able to combine policies, cannot do either efficiently 1668

[7]. This is because determining an authorization for a subject to perform an action on a resource 1669

can only be determined by issuing a request. In other words, there exists no method of 1670

determining the authorization state without testing all possible decision outcomes. 1671

 1672

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 41

Appendix A—Acronyms 1673

Selected acronyms and abbreviations used in this document are defined below. 1674

ABAC Attribute Based Access Control

ACL Access Control List

ANSI/INCITS American National Standards Institute/International Committee for

Information Technology Standards

API Application Programming Interface

DAC Discretionary Access Control

EPP Event Processing Point

FISMA Federal Information Security Modernization Act

IR Interagency Report

IT Information Technology

ITL Information Technology Laboratory

MAC Mandatory Access Control

NGAC Next Generation Access Control

NGAC-FA Next Generation Access Control Functional Architecture

NGAC-GOADS Next Generation Access Control Generic Operations and Abstract Data

Structures

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured Information Standards

OMB Office of Management and Budget

ORCON Originator Controlled

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PM Policy Machine

PRP Policy Retrieval Point

RAP Resource Access Point

RBAC Role-Based Access Control

RS Resource Server

SAML Security Assertion Markup Language

SOA Service Oriented Architecture

SP Special Publication

TCSEC Trusted Computer Security Evaluation Criteria

XACML Extensible Access Control Markup Language

XML Extensible Markup Language

 1675

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 42

Appendix B—References 1676

[1] Information technology – Role-Based Access Control (RBAC), INCITS 359-2004,

American National Standard for Information Technology, American National

Standards Institute, 2004.

[2] Information technology - Next Generation Access Control - Functional Architecture

(NGAC-FA), INCITS 499-2013, American National Standard for Information

Technology, American National Standards Institute, March 2013.

[3] D. Bell and L. La Padula. Secure computer systems: unified exposition and

MULTICS. Report ESD-TR-75-306, The MITRE Corporation, Bedford,

Massachusetts, March 1976.

[4] D.F.C. Brewer and M.J. Nash, “The Chinese Wall Security Policy,” 1989 IEEE

Symposium on Security and Privacy, Oakland, California, USA, May 1-3, 1989, pp.

206-214. http://dx.doi.org/10.1109/SECPRI.1989.36295 [accessed 11/15/15]

[5] DoD Computer Security Center, Trusted Computer System Evaluation Criteria

(December 1985).

[6] D.F. Ferraiolo, S.I. Gavrila, V.C. Hu, and D.R. Kuhn, “Composing and Combining

Policies Under the Policy Machine,” Tenth ACM Symposium on Access Control

Models and Technologies (SACMAT ‘05), Stockholm, Sweden, 2005, pp. 11-20.

http://dx.doi.org/10.1145/1063979.1063982 [accessed 11/15/15] or

https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf [accessed 11/15/15]

[7] D.F. Ferraiolo, V. Atluria, and S.I. Gavrila, “The Policy Machine: A Novel

Architecture and Framework for Access Control Policy Specification and

Enforcement,” Journal of Systems Architecture, vol. 57, no. 4, pp. 412-424, April

2011. http://dx.doi.org/10.1016/j.sysarc.2010.04.005 [accessed 11/15/15]

[8] D. Ferraiolo, S. Gavrila, and W. Jansen, National Institute of Standards and

Technology (NIST) Internal Report (IR) 7987 Revision 1, “Policy Machine:

Features, Architecture, and Specification,” October 2015.

http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7987r1.pdf [accessed 11/15/15]

[9] D. Ferraiolo, S. Gavrila, and W. Jansen, “On the Unification of Access Control and

Data Services,” in Proceedings of the IEEE 15th International Conference of

Information Reuse and Integration, 2014, pp. 450 – 457.

http://csrc.nist.gov/pm/documents/ir2014_ferraiolo_final.pdf [accessed 11/15/15]

[10] R. Graubart, On the need for a third form of access control, in: Proceedings of the

National Computer Security Conference, 1989, pp. 296 –304.

http://dx.doi.org/10.1109/SECPRI.1989.36295
http://dx.doi.org/10.1145/1063979.1063982
https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7987r1.pdf
http://csrc.nist.gov/pm/documents/ir2014_ferraiolo_final.pdf

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 43

[11] V.C. Hu, D.F. Ferraiolo, and D.R. Kuhn, National Institute of Standards and

Technology (NIST) Interagency Report (IR) 7316, “Assessment of Access Control

Systems,” September 2006. http://csrc.nist.gov/publications/nistir/7316/NISTIR-

7316.pdf [accessed 11/15/15]

[12] V. C. Hu, D.F. Ferraiolo, and K. Scarfone, Access Control Policy Combinations for

the Grid Using the Policy Machine, Cluster Computing and the Grid, 2007, pp. 225-

232.

[13] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K.

Scarfone, National Institute of Standards and Technology (NIST) Special Publication

(SP) 800-162, Guide to Attribute Based Access Control (ABAC) Definition and

Considerations, January 2014.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf [accessed

11/15/15]

[14] M. Lorch et al, “First Experience Using XACML for Access Control in Distributed

Systems, ACM Workshop on XML Security, Fairfax, Virginia, 2003.

[15] A Guide to Understanding Discretionary Access Control in Trusted Systems, NCSC-

TG-003, Version-1, National Computer Security Center, Fort George G. Meade,

Maryland, USA, September 30, 1987, 29 pp.

http://csrc.nist.gov/publications/secpubs/rainbow/tg003.txt [accessed 11/15/15]

[16] XACML Profile for Role Based Access Control (RBAC), Committee Draft 01,

February 2004.

[17] The eXtensible Access Control Markup Language (XACML), Version 3.0, OASIS

Standard, January 22, 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-

spec-os-en.pdf [accessed 11/15/15]

[18] 2010 Economic Analysis of Role-Based Access Control, RTI Number 0211876,

Research Triangle Institute, December 2010.

[19] R. Simon, M. Zurko, Separation of duty in role based access control environments,

in: Proc. of the New Security Paradigms Workshop, 1997.

[20] Information technology – Next Generation Access Control – Generic Operations and

Data Structures, INCITS 526, American National Standard for Information

Technology, American National Standards Institute, to be published.

 1677

http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
http://csrc.nist.gov/publications/secpubs/rainbow/tg003.txt
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 44

Appendix C—XACML 3.0 Encoding of Medical Records Access Policy 1678

/* This policy pertains to Medical Record (Read or Write) Access by users with role “Doctor” or 1679

“Intern”. Rule 1 denies access if the WardAssignment of the doctor or intern does not match the 1680

WardLocation of the patient. Rule 2 denies write access to intern unconditionally. Rule 3 permits 1681

access if the subject is a doctor and the PatientStatus is Critical without any other conditions. */ 1682

<Policy PolicyId=”Medical-Record-Access-by-Doctors-and-Interns” 1683

 RuleCombiningAlgId = “permit-overrides”> 1684

 1685

<Target> /* Policy Target covers all subjects with Doctor or Intern role, resources with medical-1686

records as Resource-id, and actions either read or write */ 1687

 1688

 <AnyOf> 1689

 <AllOf> /* Specifying the subject match – subjects with role-id equal to Doctor or Intern */ 1690

 <Match MatchId="string-equal"> /* Subject role = Doctor */ 1691

 <AttributeValue> Doctor </AttributeValue> 1692

 <AttributeDesignator Category=”access-subject” AttributeId=”role-id”/> 1693

 </Match> 1694

 <AllOf> 1695

 <AllOf> /* Specifying the subject match – subjects with role-id equal to Doctor */ 1696

 <Match MatchId="string-equal"> /* Subject role = Intern */ 1697

 <AttributeValue> Intern </AttributeValue> 1698

 <AttributeDesignator Category=”access-subject” AttributeId=”role-id”/> 1699

 </Match> 1700

 <AllOf> 1701

</AnyOf> 1702

 1703

 <AnyOf> 1704

 <AllOf> /* Specifying the resource match – resource with resource-id equal to medical- 1705

 records */ 1706

 <Match MatchId="string-equal"> 1707

 <AttributeValue> medical-records</AttributeValue> 1708

 <AttributeDesignator Category=”resource” AttributeId=”resource-id”/> 1709

 </Match> 1710

 </AllOf> 1711

</AnyOf> 1712

 1713

 <AnyOf> /* Specifying action match – action with either read or write value */ 1714

 <AllOf> /* read action */ 1715

 <Match MatchId="string-equal"> 1716

 <AttributeValue> read</AttributeValue> 1717

 <AttributeDesignator Category=”action” AttributeId=”action-id”/> 1718

 </Match> 1719

 </AllOf> 1720

 <AllOf> /* write action */ 1721

 <Match MatchId="string-equal"> 1722

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 45

 <AttributeValue> write</AttributeValue> 1723

 <AttributeDesignator Category=”action” AttributeId=”action-id”/> 1724

 </Match> 1725

 </AllOf> 1726

 </AnyOf> 1727

</Target> 1728

<Rule RuleId=”Rule 1” 1729

 Effect=”Deny”> /* denial of access to medical record for all subjects if the patient is not 1730

 in the same ward to which the doctor or intern is assigned */ 1731

 <Condition> 1732

 <Apply FunctionId=”string-not-equal”> 1733

 <Apply FunctionId=”string-one-and-only”> 1734

 <AtributeDesignator Category=”access-subject” AttributeId=”WardAssignment”> 1735

 </Apply> 1736

 <Apply FunctionId=”string-one-and-only”> 1737

 <AtributeSelector Category=”resource” 1738

 Path=”medical-records/patient/WardLocation/text()”/> 1739

 </Apply> 1740

 </Condition> 1741

 </Rule> 1742

 1743

 <Rule RuleId=”Rule 2” 1744

 Effect=”Deny”> /* unconditional denial of write access to Interns */ 1745

 <Condition> 1746

 <Apply FunctionId=”string-equal”> 1747

 <Apply FunctionId=”string-one-and-only”> 1748

 <AttributeValue> Intern</AttributeValue> 1749

 <AttributeDesignator Category=”access-subject” AttributeId=”role-id”/> 1750

 </Apply> 1751

 <Apply FunctionId=”string-one-and-only”> 1752

 <AttributeValue> write</AttributeValue> 1753

 <AtributeDesignator Category=”action” AttributeId=”action-id”> 1754

 </Apply> 1755

 </Condition> 1756

 </Rule> 1757

 1758

 <Rule RuleId=”Rule 3” 1759

 Effect=”Permit”> /* unconditional access to medical records for doctor if the patient status 1760

 is critical irrespective of the location of the patient */ 1761

 <Condition> 1762

 <Apply FunctionId=”and”> /* combines subject role value and patient status value */ 1763

 1764

 <Apply FunctionId=”string-one-and-only”> /* retrieves the subject role */ 1765

 <AttributeValue> doctor</AttributeValue> 1766

 <AttributeDesignator Category=”access-subject” AttributeId=”role-id”/> 1767

 </Apply> 1768

Draft NIST SP 800-178 A Comparison of ABAC Standards for Data Services

 46

 1769

 <Apply FunctionId=”string-equal”> /* looks for medical records where patient 1770

 status is critical */ 1771

 <Apply FunctionId=”string-one-and-only”> 1772

 <AttributeSelector Category=”resource” 1773

 Path=”medical-records/patient/PatientStatus/text()”/> 1774

 </Apply> 1775

 <AttributeValue>Critical</AttributeValue> 1776

 </Apply> 1777

 </Apply> 1778

 </Condition> 1779

 </Rule> 1780

</Policy> 1781

 1782

